Skip to main content
Log in

Benzocoumarin-Styryl Hybrids: Aggregation and Viscosity Induced Emission Enhancement

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Two benzo[h]chromen-3-yl)ethylidene) malononitrile styryl hybrid dyes are synthesized and characterized by NMR and elemental analysis. One is based on nitrogen donor and other on oxygen (3b and 3b respectively). Dyes are low emissive in the solution but dramatically showed increase in emission intensity in aggregates form in the THF (tetrahydrofuran) /water system. Dyes are also sensitive to viscosity and showed increased emission intensity in the DCM:PEG 400 system and DMF:PEG 400 system respectively. Dyes 3a and 3b showed higher viscosity sensitivity constant (0.67 and 0.39 respectively) in DMF:PEG 400 system compared to DCM:PEG 400 (0.47 and 0.21 respectively) system which is contrary to the traditional concept of FMRs. Results shows that lowering of twisted intramolecular charge transfer (TICT) and increase in intramolecular charge transfer (ICT) in the excited state could be the reason for such behavior in the aggregate and highly viscous state. This study may provide the new insights into the field of AIEE and FMR research of such hybrid molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. An B, Kwon S, Jung S, Park SY (2002) Enhanced emission and its switching in fluorescent organic nanoparticles. J Am Chem Soc 124:14410–14415

    Article  CAS  PubMed  Google Scholar 

  2. Xu J, Wen L, Zhou W et al (2009) Asymmetric and symmetric dipole-dipole interactions drive distinct aggregation and emission behavior of intramolecular charge-transfer molecules. J Phys Chem C 113:5924–5932. doi:10.1021/jp809258h

    Article  CAS  Google Scholar 

  3. Haidekker MA, Nipper M, Mustafic A et al (2010) Dyes with segmental. Molecular Rotors, Mobility. doi:10.1007/978-3-642-04702-2

    Google Scholar 

  4. Bu F, Duan R, Xie Y et al (2015) Unusual aggregation-induced emission of a Coumarin derivative as a result of the restriction of an intramolecular twisting motion. Angew Chem Int Ed Eng 54:14492–14497. doi:10.1002/anie.201506782

    Article  CAS  Google Scholar 

  5. Xiao H, Chen K, Cui D et al (2014) Two novel aggregation-induced emission active coumarin-based Schiff bases and their applications in cell imaging. New J Chem 38:2386. doi:10.1039/c3nj01557b

    Article  CAS  Google Scholar 

  6. Hong Y, Lam JWY, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun (Camb) 4332–53. doi: 10.1039/b904665h

  7. Hu R, Leung NLC, Tang BZ (2014) AIE macromolecules: syntheses, structures and functionalities. Chem Soc Rev 43:4494–4562. doi:10.1039/c4cs00044g

    Article  CAS  PubMed  Google Scholar 

  8. Liang J, Tang BZ, Liu B (2015) Specific light-up bioprobes based on AIEgen conjugates. Chem Soc Rev 44:2798–2811. doi:10.1039/c4cs00444b

    Article  CAS  PubMed  Google Scholar 

  9. Haidekker MA, Theodorakis EA (2010) Environment-sensitive behavior of fluorescent molecular rotors. J Biol Eng 4:11. doi:10.1186/1754-1611-4-11

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wagner BD (2009) The use of coumarins as environmentally-sensitive fluorescent probes of heterogeneous inclusion systems. Molecules 14:210–237. doi:10.3390/molecules14010210

    Article  CAS  PubMed  Google Scholar 

  11. Narayanaswamy N, Kumar M, Das S et al (2014) A thiazole coumarin (TC) turn-on fluorescence probe for AT-base pair detection and multipurpose applications in different biological systems. Sci Rep 4:6476. doi:10.1038/srep06476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lichlyter DJ, Haidekker MA (2009) Immobilization techniques for molecular rotors—towards a solid-state viscosity sensor platform. Sensors Actuators B Chem 139:648–656. doi:10.1016/j.snb.2009.03.073

    Article  CAS  Google Scholar 

  13. Even P, Chaubet F, Letourneur D, Viriot ML, Carré M (2003) Coumarin-like fluorescent molecular rotors for bioactive polymers probing. Biorheology 40:261–263

    CAS  PubMed  Google Scholar 

  14. Dong S, Li Z, Qin J (2009) New carbazole-based fluorophores: synthesis, characterization, and aggregation-induced emission enhancement. J Phys Chem B 113:434–441. doi:10.1021/jp807510a

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Xu B, Chen J et al (2013) Oligo(phenothiazine)s: twisted intramolecular charge transfer and aggregation-induced emission. J Phys Chem C 117:23117–23125. doi:10.1021/jp405664m

    Article  CAS  Google Scholar 

  16. Yuan WZ, Gong Y, Chen S et al (2012) Fficient solid emitters with aggregation-induced emission and intramolecular charge transfer characteristics: molecular design, synthesis, Photophysical behaviors, and OLED application. Chem Mater 24:1518–1528. doi:10.1021/cm300416y

    Article  CAS  Google Scholar 

  17. Majenz W, Rettig W (1992) Photophysics of donor-acceptor substituted stilbenes. J Phys Chem 96:9643–9650. doi:10.1021/j100203a016

    Article  Google Scholar 

  18. Sasaki S, Drummen GPC, Konishi G (2016) Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. J Mater Chem C 4:2731–2743. doi:10.1039/C5TC03933A

    Article  CAS  Google Scholar 

  19. Zachariasse KA, Grobys M, von der Haar T, Hebecker A, Il’ichev YV, Jiang YB, Morawski O, Kühnle W (1996) Intramolecular charge transfer in the excited state. Kinetics and configurational changes. J Photochem Photobiol A Chem 102:59–70.

  20. Li Y, Li F, Zhang H et al (2007) Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo(para-phenylene vinylene): a key factor for aggregation-induced emission. Chem Commun (Camb) 1:231–233. doi:10.1039/b612732k

    Article  Google Scholar 

  21. Chen J, Law CCW, Lam JWY et al (2003) Restricted intramolecular rotation of 1, 1-substituted 2, 3, 4, 5-Tetraphenylsiloles. Chem Mater 79:1535–1546. doi:10.1021/cm021715z

    Article  Google Scholar 

  22. Gao B-R, Wang H-Y, Hao Y-W et al (2010) Time-resolved fluorescence study of aggregation-induced emission enhancement by restriction of intramolecular charge transfer state. J Phys Chem B 114:128–134. doi:10.1021/jp909063d

    Article  CAS  PubMed  Google Scholar 

  23. Jacobson A, Petric A, Hogenkamp D et al (1996) ( DDNP ): a solvent polarity and viscosity sensitive fluorophore for fluorescence microscopy ⊥. J Am Chem Soc 7863:5572–5579

    Article  Google Scholar 

  24. Sharma S, Dhir A, Pradeep CP (2014) ESIPT induced AIEE active material for recognition of 2-thiobarbituric acid. Sensors Actuators B Chem 191:445–449. doi:10.1016/j.snb.2013.10.014

    Article  CAS  Google Scholar 

  25. Srikrishna D, Dubey PK (2014) Efficient stepwise and one pot three-component synthesis of 2-amino-4- ( 2-oxo-2 H -chromen-3-yl ) thiophene-3-carbonitriles. Tetrahedron Lett 55:6561–6566. doi:10.1016/j.tetlet.2014.10.021

    Article  CAS  Google Scholar 

  26. Wang X, Li S-Y, Pan Y-M et al (2015) Regioselective palladium-catalyzed decarboxylative cross-coupling reaction of alkenyl acids with coumarins: synthesis of 3-styrylcoumarin compounds. J Org Chem 80:2407–2412. doi:10.1021/jo502572j

    Article  CAS  PubMed  Google Scholar 

  27. Min M, Kim Y, Hong S (2013) Regioselective palladium-catalyzed olefination of coumarins via aerobic oxidative heck reactions. Chem Commun (Camb) 49:196–198. doi:10.1039/c2cc37676h

    Article  CAS  Google Scholar 

  28. Fery-Forgues S, Le Bris MT, Mialocq J-C, Pouget J, Rettig W, Valeur B (1992) Photophysical properties of Styryl derivatives of Aminobenzoxazinones. J Phys Chem 96:701–710

    Article  CAS  Google Scholar 

  29. Gordo J, Avó J, Parola AJ et al (2011) Convenient synthesis of 3-vinyl and 3-styryl coumarins. Org Lett 13:5112–5115. doi:10.1021/ol201983u

    Article  CAS  PubMed  Google Scholar 

  30. Vendrell M, Zhai D, Er JC, Chang Y (2012) Combinatorial strategies in fluorescent probe development. Chem Rev 112:4391–4420

    Article  CAS  PubMed  Google Scholar 

  31. Tathe AB, Gupta VD, Sekar N (2015) Synthesis and combined experimental and computational investigations on spectroscopic and photophysical properties of red emitting 3-styryl coumarins. Dyes Pigments 119:49–55. doi:10.1016/j.dyepig.2015.03.023

    Article  CAS  Google Scholar 

  32. Kovalenko SA (1997) Ultrafast stokes shift and excited-state transient absorption of coumarin 153 in solution. Chem Phys Lett 271:40–50

    Article  CAS  Google Scholar 

  33. Sanap AK, Sanap KK, Shankarling GS (2015) Dyes and pigments synthesis and photophysical study of novel coumarin based styryl dyes. Dyes Pigments 120:190–199. doi:10.1016/j.dyepig.2015.04.018

    Article  CAS  Google Scholar 

  34. Raju BB, Varadarajan TS (1995) Spectroscopic studies of 7-diethylamino-3-styryl coumarins. J Photochem Photobiol A Chem 85:263–267

    Article  Google Scholar 

  35. Phadtare SB, Jarag KJ, Shankarling GS (2013) Dyes and pigments greener protocol for one pot synthesis of coumarin styryl dyes. Dyes Pigments 97:105–112. doi:10.1016/j.dyepig.2012.12.001

    Article  CAS  Google Scholar 

  36. Yeh H, Wu W, Wen Y et al (2004) Derivative of r, −Dicyanostilbene: convenient precursor for the synthesis of Diphenylmaleimide compounds, E - Z isomerization, crystal structure, and solid-state fluorescence. J Org Chem 69:6455–6462. doi:10.1021/jo049512c

    Article  CAS  PubMed  Google Scholar 

  37. Haidekker MA, Theodorakis EA (2007) Molecular rotors — fluorescent biosensors for viscosity and flow. Org Biomol Chem 5:1669–1678. doi:10.1039/b618415d

    Article  CAS  PubMed  Google Scholar 

  38. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman et al (2009) Gaussian 09 Revision A

  39. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  40. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  41. Ditchfield R, Hehre WJ, Pople JA (1971) Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J Phys Chem 54:724. doi:10.1063/1.1674902

    Article  CAS  Google Scholar 

  42. Krishnan R, Schlegel HB, Pople JA (1980) Derivative studies in configuration interaction theory. J Chem Phys 72:4654. doi:10.1063/1.439708

    Article  CAS  Google Scholar 

  43. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335. doi:10.1016/0009-2614(96)00349-1

    Article  CAS  Google Scholar 

  44. Pittelkow M, Boas U, Jessing M, Jensen KJ (2005) Role of theperi-effect in synthesis and reactivity of highly substituted naphthaldehydes: a novel backbone amide linker for solid-phase synthesis. Org Biomol Chem 3:508–514. doi:10.1039/b412971g

    Article  CAS  PubMed  Google Scholar 

  45. Zhou F, Shao J, Yang Y, et al. (2011) Molecular rotors as fluorescent viscosity Sensors: Molecular Design, Polarity Sensitivity, Dipole Moments Changes, Screening Solvents, and Deactivation Channel of the Excited States. European J Org Chem n/a-n/a. doi: 10.1002/ejoc.201100606

  46. Junko M, Ito K (1984) On the spectral properties of some fused 4-Methylcoumarins. Chem Pharma Bull Pharm Bull 32:1178–1182

    Article  Google Scholar 

  47. Lakowicz JR (2006) Principles of fluorescence spectroscopy, third. Springer, New York

    Book  Google Scholar 

  48. Ji S, Yang J, Yang Q et al (2009) Tuning the intramolecular charge transfer of alkynylpyrenes: effect on photophysical properties and its application in design of OFF-ON fluorescent thiol probes. J Org Chem 74:4855–4865. doi:10.1021/jo900588e

    Article  CAS  PubMed  Google Scholar 

  49. Han F, Chi L, Wu W et al (2008) Environment sensitive phenothiazine dyes strongly fluorescence in protic solvents. J Photochem Photobiol A Chem 196:10–23. doi:10.1016/j.jphotochem.2007.11.007

    Article  CAS  Google Scholar 

  50. Zheng J, Huang F, Li Y et al (2015) The aggregation-induced emission enhancement properties of BF2 complex isatin-phenylhydrazone: synthesis and fluorescence characteristics. Dyes Pigments 113:502–509. doi:10.1016/j.dyepig.2014.09.025

    Article  CAS  Google Scholar 

  51. Xie Y-Z, Shan G-G, Li P et al (2013) A novel class of Zn(II) Schiff base complexes with aggregation-induced emission enhancement (AIEE) properties: synthesis, characterization and photophysical/electrochemical properties. Dyes Pigments 96:467–474. doi:10.1016/j.dyepig.2012.09.020

    Article  CAS  Google Scholar 

  52. Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA (2005) Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorg Chem 33:415–425. doi:10.1016/j.bioorg.2005.07.005

    Article  CAS  PubMed  Google Scholar 

  53. Morimoto A, Biczók L, Yatsuhashi T et al (2002) Radiationless deactivation process of 1-Dimethylamino-9-fluorenone induced by conformational relaxation in the excited state: a new model molecule for the TICT process. J Phys Chem A 106:10089–10095. doi:10.1021/jp0203604

    Article  CAS  Google Scholar 

  54. Loutfy RO (1986) Fluorescence probes for polymer free-volume. Pure app! Chem 58:1239–1248

    CAS  Google Scholar 

  55. Forster T, Hoffmann G (2011) (1971) The viscosity dependence of the fluorescence quantum yields of some dye systems. J Phys Chem 75:63–76. doi:10.1524/zpch.1971.75.1_2.063

    Google Scholar 

  56. Kung CE, Reed J (1989) Fluorescent molecular rotors: a new class of probes for tubulin structure and assembly. Bochemistry 28:6678–6686

    Article  CAS  Google Scholar 

  57. Iwaki T, Torigoe C, Noji M, Nakanishi M (1993) Antibodies for fluorescent molecular rotors. Biochemistry 32:7589–7592. doi:10.1021/bi00080a034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the authors, Umesh Warde, is grateful to UGC-SAP, India for Junior and Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Electronic supplementary material

ESM 1

(DOCX 945 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warde, U., Sekar, N. Benzocoumarin-Styryl Hybrids: Aggregation and Viscosity Induced Emission Enhancement. J Fluoresc 27, 1747–1758 (2017). https://doi.org/10.1007/s10895-017-2113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2113-3

Keywords

Navigation