Skip to main content
Log in

Fluorescent Carbon Dot as Nanosensor for Sensitive and Selective Detection of Cefixime Based on Inner Filter Effect

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Here a simple and sensitive fluorescent assay for detecting Cefixime based on inner filter effect (IFE) has been proven, which is conceptually different from the previously reported CEF fluorescent assays. In this sensing platform, fluorescent carbon dots (CDs) were prepared by one-pot synthesis and was directly used as fluorophore in IFE. The method is based on the complexation reaction between cefixime and palladium ion in the presence of acidic buffer solution (pH 4). The Pd(II)-CEFcomplex was capable of functioning as a powerful absorber in IFE to influence the excitation of fluorophore (CDs). Production Pd(II)-CEFcomplex induced the absorption band transition from 310 to 400 nm, which resulted in the complementary overlap with the excitation spectra of CDs. Due to the competitive absorption, the excitation of CDs was significantly weakened, resulting in the quenching of CDs. The present IFE-based sensing strategy showed a good linear relationship from 0.2 × 10−6 M to 8 × 10−6 M (R2 = 0.987) and provided an exciting detection limit of 0.5 × 10−7 (3δ/slope). The proposed method has been successfully applied for the determination of cefixime in raw milk and human urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CDs :

Carbon quantum dots

PL :

Photoluminescence

CEF :

Cefixime

References

  1. Beloglazova NV, Eremin SA (2015) Design of a sensitive fluorescent polarization immunoassay for rapid screening of milk for cephalexin. Anal Bioanal Chem 407(28):8525–8532. doi:10.1007/s00216-015-9006-6

    Article  CAS  PubMed  Google Scholar 

  2. Shah J, Jan MR, Shah S, Inayatullah (2011) Spectrofluorimetric method for determination and validation of cefixime in pharmaceutical preparations through Derivatization with 2-Cyanoacetamide. J Fluoresc 21(2):579–585. doi:10.1007/s10895-010-0745-7

    Article  CAS  PubMed  Google Scholar 

  3. Meng F, Chen X, Zeng Y, Zhong D (2005) Sensitive liquid chromatography–tandem mass spectrometry method for the determination of cefixime in human plasma: application to a pharmacokinetic study. J Chromatogr B 819(2):277–282. doi:10.1016/j.jchromb.2005.02.015

    Article  CAS  Google Scholar 

  4. Khandagle KS, Gandhi SV, Deshpande PB, Gaikwad NV (2011) A simple and sensitive RPHPLC method for simultaneous estimation of cefixime and ofloxacin in combined tablet dosage form. Int J Pharm Pharm Sci 3(1):46–48

    CAS  Google Scholar 

  5. Jain R, Gupta VK, Jadon N, Radhapyari K (2010) Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Anal Biochem 407(1):79–88. doi:10.1016/j.ab.2010.07.027

    Article  CAS  PubMed  Google Scholar 

  6. Tayebi M, Tavakkoli Yaraki M, Mogharei A, Ahmadieh M, Tahriri M, Vashaee D, Tayebi L (2016) Thioglycolic acid-capped CdS quantum dots conjugated to α-amylase as a fluorescence probe for determination of starch at low concentration. J Fluoresc 26(5):1787–1794. doi:10.1007/s10895-016-1870-8

    Article  CAS  PubMed  Google Scholar 

  7. Akhgari F, Fattahi H, Oskoei YM (2015) Recent advances in nanomaterial-based sensors for detection of trace nitroaromatic explosives. Sensor Actuat B-Chem 221:867–878. doi:10.1016/j.snb.2015.06.146

    Article  CAS  Google Scholar 

  8. Rofouei MK, Tajarrod N, Masteri-Farahani M, Zadmard R (2015) A new fluorescence sensor for cerium (III) ion using glycine Dithiocarbamate capped manganese doped ZnS quantum dots. J Fluoresc 25(6):1855–1866. doi:10.1007/s10895-015-1678-y

    Article  CAS  PubMed  Google Scholar 

  9. Thomas D, Lonappan L, Rajith L, Cyriac ST, Girish Kumar K (2013) Quantum dots (QDs) based fluorescent sensor for the selective determination of Nimesulide. J Fluoresc 23(3):473–478. doi:10.1007/s10895-013-1170-5

    Article  CAS  PubMed  Google Scholar 

  10. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381. doi:10.1039/C4CS00269E

    Article  CAS  PubMed  Google Scholar 

  11. Roy P, Chen P-C, Periasamy AP, Chen Y-N, Chang H-T (2015) Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater Today 18(8):447–458. doi:10.1016/j.mattod.2015.04.005

    Article  CAS  Google Scholar 

  12. Gonçalves H, Esteves da Silva JCG (2010) Fluorescent carbon dots capped with PEG200 and Mercaptosuccinic acid. J Fluoresc 20(5):1023–1028. doi:10.1007/s10895-010-0652-y

    Article  PubMed  Google Scholar 

  13. Zhu C, Zhai J, Dong S (2012) Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem Commun 48(75):9367–9369. doi:10.1039/C2CC33844K

    Article  CAS  Google Scholar 

  14. Sheng M, Gao Y, Sun J, Gao F (2014) Carbon nanodots–chitosan composite film: a platform for protein immobilization, direct electrochemistry and bioelectrocatalysis. Biosens Bioelectron 58:351–358. doi:10.1016/j.bios.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, Cao L, Yang S-T, Lu F, Meziani MJ, Tian L, Sun KW, Bloodgood MA, Sun Y-P (2010) Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Edit 49(31):5310–5314. doi:10.1002/anie.201000982

    Article  CAS  Google Scholar 

  16. Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie S-Y, Sun Y-P (2007) Carbon dots for Multiphoton bioimaging. J Am Chem Soc 129(37):11318–11319. doi:10.1021/ja073527l

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin Z, Xue W, Chen H, Lin J-M (2011) Peroxynitrous-acid-induced Chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal Chem 83(21):8245–8251. doi:10.1021/ac202039h

    Article  CAS  PubMed  Google Scholar 

  18. Liu S, Tian J, Wang L, Zhang Y, Qin X, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012)  Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater 24:2037–2041. doi:10.1002/adma.201200164

  19. Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, Huang Y (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47:6695–6697. doi:10.1039/C1CC11943E

  20. Yue Q, Hou Y, Yue S, Du K, Shen T, Wang L, Xu S, Li H, Liu J (2015) Construction of an off-on fluorescence system based on carbon dots for trace pyrophosphate sensing. J Fluoresc 25(3):585–594. doi:10.1007/s10895-015-1538-9

    Article  CAS  PubMed  Google Scholar 

  21. Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun 34:5118–5120. doi:10.1039/B907612C

  22. Dong Y, Zhou N, Lin X, Lin J, Chi Y, Chen G (2010) Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem Mater 22:5895–5899. doi:10.1021/cm1018844

  23. Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, Liu Y, Wang H, Wang W, Liu W (2012) Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33:3604–3613. doi:10.1016/j.biomaterials.2012.01.052

  24. Li Y, Hu Y, Zhao Y, Shi G, Deng L, Hou Y, Qu L (2011) An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv Mater 23:776–780. doi:10.1002/adma.201003819

  25. Cao L, Sahu S, Anilkumar P, Bunker CE, Xu J, Fernando KAS, Wang P, Guliants EA, Tackett KN, Sun YP (2011) Carbon nanoparticles as visible-light photocatalysts for efficient co2 conversion and beyond. J Am Chem Soc 133:4754–4757. doi:10.1021/ja200804h

  26. Yuan P, Walt DR (1987) Calculation for fluorescence modulation by absorbing species and its application to measurements using optical fibers. Anal Chem 59(19):2391–2394. doi:10.1021/ac00146a015

    Article  CAS  Google Scholar 

  27. Yang X, Wang K, Guo C (2000) A fluorescent optode for sodium ion based on the inner filter effect. Anal Chim Acta 407(1–2):45–52. doi:10.1016/S0003-2670(99)00800-4

    CAS  Google Scholar 

  28. Yang X-F, Liu P, Wang L, Zhao M (2008) A Chemosensing Ensemble for the Detection of cysteine based on the inner filter effect using a Rhodamine B Spirolactam. J Fluoresc 18(2):453–459. doi:10.1007/s10895-007-0286-x

    Article  CAS  PubMed  Google Scholar 

  29. Shang L, Qin C, Jin L, Wang L, Dong S (2009) Turn-on fluorescent detection of cyanide based on the inner filter effect of silver nanoparticles. Analyst 134(7):1477–1482. doi:10.1039/B823471J

    Article  CAS  PubMed  Google Scholar 

  30. Li H, He X, Liu Y, Huang H, Lian S, Lee S-T, Kang Z (2011) One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49(2):605–609. doi:10.1016/j.carbon.2010.10.004

    Article  CAS  Google Scholar 

  31. Sun D, Ban R, Zhang P-H, Wu G-H, Zhang J-R, Zhu J-J (2013) Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 64:424–434. doi:10.1016/j.carbon.2013.07.095

    Article  CAS  Google Scholar 

  32. Ding H, Wei J-S, Xiong H-M (2014) Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale 6(22):13817–13823. doi:10.1039/C4NR04267K

    Article  CAS  PubMed  Google Scholar 

  33. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T (2013) Carbon-based dots Co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Edit 52(30):7800–7804. doi:10.1002/anie.201301114

    Article  CAS  Google Scholar 

  34. Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Edit 46(34):6473–6475. doi:10.1002/anie.200701271

    Article  CAS  Google Scholar 

  35. Zhao Q-L, Zhang Z-L, Huang B-H, Peng J, Zhang M, Pang D-W (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun 41:5116–5118. doi:10.1039/B812420E

    Article  Google Scholar 

  36. Azmi SNH, Iqbal B, Al-Humaimi NSH, Al-Salmani IRS, Al-Ghafri NAS, Rahman N (2013) Quantitative analysis of cefixime via complexation with palladium(II) in pharmaceutical formulations by spectrophotometry. J Pharma Analysis 3(4):248–256. doi:10.1016/j.jpha.2012.12.009

    Article  CAS  Google Scholar 

  37. Cayuela A, Soriano ML, Valcárcel M (2015) Reusable sensor based on functionalized carbon dots for the detection of silver nanoparticles in cosmetics via inner filter effect. Anal Chim Acta 872:70–76. doi:10.1016/j.aca.2015.02.052

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Samadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhgari, F., Samadi, N. & Farhadi, K. Fluorescent Carbon Dot as Nanosensor for Sensitive and Selective Detection of Cefixime Based on Inner Filter Effect. J Fluoresc 27, 921–927 (2017). https://doi.org/10.1007/s10895-017-2027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2027-0

Keyword

Navigation