Skip to main content
Log in

Luminescent Behavior of Ru(II) Polypyridyl Morpholine Complexes, Synthesis, Characterization, DNA, Protein Binding, Sensor Effect of Ions/Solvents and Docking Studies

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

New three ruthenium (II) polypyridyl complexes [Ru(phen)2mpip]2+(1) {mpip = 2-(4-morpholinophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline}, (phen = 1,10-Phenanthrolene), [Ru(bpy)2mpip]2+(2) (bpy = 2,2’bipyridyl), [Ru(dmb)2mpip]2+(3) (dmb = 4, 4-dimethyl 2, 2’-bipyridine) have been synthesized and characterized by spectral studies IR, UV–vis, 1H, 13C-NMR, mass and elemental analysis. The binding properties of these three complexes towards calf-thymus DNA (CT-DNA) have been investigated by UV–Vis spectroscopy, different fluorescence methods and viscosity measurements, indicating that all the complexes bind to CT-DNA by means of intercalation, but with different binding affinities. Sensor effect of ions/solvents and BSA (Bovine Serum Albumin) binding studies of these complexes were also studied. Docking studies also reveals that complexes will bind in between base pairs (Intercalate) of DNA and gives information about the binding strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dabrowiak JC (2009) Nanomedicine. In: Metals in medicine. Wiley

  2. Roat-Malone RM (2002) Bioinorganic chemistry: a short course. Wiley

  3. Wang B, Cao LQ, Chiuman W, Li YF, Xi Z (2010) Probing the function of nucleotides in the catalytic cores of the 8 − 17 and 10 − 23 DNAzymes by abasic nucleotide and C3 spacer substitutions. Biochemistry 49:7553–7562

    Article  CAS  PubMed  Google Scholar 

  4. Werbeck ND, Zeymer C, Kellner JN, Reinstein J (2011) Coupling of oligomerization and nucleotide binding in the AAA+ Chaperone ClpB. Biochemistry 50:899–909

    Article  CAS  PubMed  Google Scholar 

  5. Frezza M, Hindo S, Chen D, Davenport A, Schmitt S, Tomco D, Dou QP (2010) Curr Pharm Des 16(16):1813–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu HY, Zhang S, Dunn MR, Chaput JC (2013) An efficient and faithful in vitro replication system for threose nucleic acid. J Am Chem Soc 135:3583–3591

    Article  CAS  PubMed  Google Scholar 

  7. Chen W, Schuster GB (2013) Precise sequence control in linear and cyclic copolymers of 2,5-Bis(2-thienyl)pyrrole and aniline by DNA-programmed assembly. J Am Chem Soc 135:4438–4449

    Article  CAS  PubMed  Google Scholar 

  8. Ruiz-Mirazo K, Briones C, de la Escosura A (2014) Prebiotic systems chemistry: new perspectives for the origins of life. Chem Rev 114:285–366

    Article  CAS  PubMed  Google Scholar 

  9. Fulmer GR, Miller AJM (2010) NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29:2176–2179

    Article  CAS  Google Scholar 

  10. Rosenberg B (1978) Platinum complexes for the treatment of cancer. Interdiscip Sci Rev 3:134–147

    Article  CAS  Google Scholar 

  11. Esteban-Fernandez D, Moreno-Gordaliza E, Canas B, Palaciosa MA, Gomez-Gomez MM (2010) Analytical methodologies for metallomics studies of antitumor Pt-containing drugs. Metallomics 2:19–38

    Article  CAS  PubMed  Google Scholar 

  12. Fuertes MA, Alonso C, Perez JM (2003) Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 103:645–662

    Article  CAS  PubMed  Google Scholar 

  13. Akiyama S, Chen ZS, Sumizawa T, Furukawa T (1999) Resistance to cisplatin. Anticancer Drug Des 14:143–151

    CAS  PubMed  Google Scholar 

  14. Reedijk J (2003) New clues for platinum antitumor chemistry: kinetically controlled metal binding to DNA. Proc Natl Acad Sci U S A 100:3611–3616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Milacic V, Dou QP (2009) The tumor proteasome as a novel target for gold (III) complexes: implications for breast cancer therapy. Coord Chem Rev 253:1649–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Quiroga AG, Ranninger CN (2004) Contribution to the SAR field of metallated and coordination complexes: studies of the palladium and platinum derivatives with selected thiosemicarbazones as antitumoral drugs. Coord Chem Rev 248:119–133

    Article  CAS  Google Scholar 

  17. Pellerito L, Nagy L (2002) Organotin(IV)n + complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects. Coord Chem Rev 224:111–150

    Article  CAS  Google Scholar 

  18. Jain SS, Anderson CM, DiRienzo F, Taylor IR, Jain K, Guha S, Hoque N (2013) RNA binding and inhibition of primer extension by a Ru (III)/Pt (II) metal complex. Chem Commun 49:5031–5033

    Article  CAS  Google Scholar 

  19. Bratsos I, Jedner S, Gianferrara T (2007) Ruthenium anticancer compounds: challenges and expectations. Chimia 61:692–697

    Article  CAS  Google Scholar 

  20. Anderson CM, Taylor IR, Tibbetts MF, Philpott J, Hu Y, Tanski JM (2012) Hetero-multinuclear ruthenium (III)/platinum (II) complexes that potentially exhibit both antimetastatic and antineoplastic properties. Inorg Chem 51:12917–12924

    Article  CAS  PubMed  Google Scholar 

  21. Shi S, Liu J, Yao TM, Geng XT, Jiang LF, Yang QY, Cheng L, Ji LN (2008) Inorg Chem 47:2910

    Article  CAS  PubMed  Google Scholar 

  22. Herman A, Tanski JM, Tibbetts MF, Anderson CM (2008) Synthesis, Characterization, and in vitro evaluation of a potentially selective anticancer, mixed-metal [ruthenium (III) − platinum (II)] trinuclear complex. Inorg Chem 47:274–280

    Article  CAS  PubMed  Google Scholar 

  23. Auzias M, Gueniat J, Therrien B, Süss-Fink G, Renfrew AK, Dyson PJ (2009) Arene–ruthenium complexes with ferrocene-derived ligands: synthesis and characterization of complexes of the type [Ru(η6-arene)(NC5H4CH2NHOC-C5H4FeC5H5)Cl2] and [Ru(η6-arene)(NC3H3N(CH2)2O2C–C5H4FeC5H5)Cl2]. J Organomet Chem 694:855–861

    Article  CAS  Google Scholar 

  24. Antonarakis ES, Emadi A (2010) Ruthenium-based chemotherapeutics: are they ready for prime time? Cancer Chemother Pharmacol 66:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rajaraman A, Sahoo AR, Hild F, Fischmeister C, Achard M, Bruneau C (2015) Dalton Trans 44(40):17467–17472

    Article  CAS  PubMed  Google Scholar 

  26. Antonarakis ES, Emadi A (2010) Cancer Chemother Pharmacol 66(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lerman LS (1961) Structural considerations in the interaction of DNA and acridines. J Mol Biol 3:18–30

    Article  CAS  PubMed  Google Scholar 

  28. Ramachandran E, Raja DS, Bhuvanesh NSP, Natarajan K (2012) Mixed ligand palladium (II) complexes of 6-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde 4N-substituted thiosemicarbazones with triphenylphosphine co-ligand: synthesis, crystal structure and biological properties. Dalton Trans 41:13308–13323

    Article  CAS  PubMed  Google Scholar 

  29. Raja DS, Bhuvanesh NSP, Natarajan K (2012) A novel water soluble ligand bridged cobalt (II) coordination polymer of 2-oxo-1,2-dihydroquinoline-3-carbaldehyde (isonicotinic) hydrazone: evaluation of the DNA binding, protein interaction, radical scavenging and anticancer activity. Dalton Trans 41:4365–4377

    Article  CAS  PubMed  Google Scholar 

  30. Meng X, Leyva ML, Jenny M, Gross I, Benosman S, Harlepp B, Hébraud P, Boos A, Wlosik P, Bischoff P, Sirlin C, Pfeffer M, Loeffler JP, Gaiddon C (2009) A ruthenium-containing organometallic compound reduces tumor growth through induction of the endoplasmic reticulum stress gene CHOP. Cancer Res 69:5458–5466

    Article  CAS  PubMed  Google Scholar 

  31. Srishailam A, Kumar YP, Venkat Reddy P, Nambigari N, Vuruputuri U, Singh SS, Satyanarayana S (2014) Cellular uptake, cytotoxicity, apoptosis, DNA-binding, photocleavage and molecular docking studies of ruthenium(II) polypyridyl complexes. J Photochem Photobiol B Biol 132:111–123

  32. Srishailam A, Gabra NM, Kumar YP, Reddy KL, Devi CS, Anil Kumar D, Singh SS, Satyanarayana S (2014) Synthesis, characterization; DNA binding and antitumor activity of ruthenium (II) polypyridyl complexes. J Photochem Photobiol B Biol 141:47–58

    Article  CAS  Google Scholar 

  33. Reddy MR, Reddy PV, Kumar YP, Srishailam A, Nambigari N, Satyanarayana S (2014) Synthesis, characterization, DNA binding, light switch “on and off”, docking studies and cytotoxicity, of ruthenium (II) and cobalt (III) polypyridyl complexes. J Fluoresc 24:803–817

    Article  CAS  PubMed  Google Scholar 

  34. Shobha Devi C, Anil Kumar D, Singh SS, Gabra N, Deepika N, Kumar YP, Satyanarayana S (2013) Synthesis, interaction with DNA, cytotoxicity, cell cycle arrest and apoptotic inducing properties of ruthenium(II) molecular “light switch”. Eur J Med Chem 64:410–421

    Article  CAS  PubMed  Google Scholar 

  35. Deepika N, Kumar YP, Shobha Devi C, Reddy PV, Srishailam A, Satyanarayana S (2013) Synthesis, characterization, and DNA binding, photocleavage, cytotoxicity, cellular uptake, apoptosis, and on–off light switching studies of Ru(II) mixed-ligand complexes containing 7-fluorodipyrido [3, 2-a: 2′, 3′-c] phenazine. J Biol Inorg Chem 18:751–766

    Article  CAS  PubMed  Google Scholar 

  36. Shobha Devi C, Satyanarayana S (2012) Synthesis, characterization, and DNA-binding properties of Ru(II) molecular “light switch” complexes. J Coord Chem 654:74–486

    Google Scholar 

  37. Yata PK, Shilpa M, Nagababu P, Kotha LR, Reddy MR, Gabra NM, Satyanarayana S (2012) Study of DNA light switch Ru(II) complexes: synthesis, characterization, photocleavage and antimicrobial activity. J Fluoresc 22:835–847

    Article  CAS  PubMed  Google Scholar 

  38. Perrin DD, Annarego WLF, Perrin DR (1980) Drying of solvents and laboratory chemicals, 2nd edn. Pergamon Press, New York

    Google Scholar 

  39. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  40. Reichmann ME, Rice SA, Thomas CA, Doty P (1954) A further examination of the molecular weight and size of desoxypentose nucleic acid. J Am Chem Soc 76:3047–3053

    Article  CAS  Google Scholar 

  41. Yamada M, Tanaka Y, Yoshimoto Y, Kuroda S, Shimo I (1992) Synthesis and properties of diamino-substituted dipyrido [3,2-a: 2′,3′-c] phenazine. Bull Chem Soc Jpn 65:1006–1011

    Article  CAS  Google Scholar 

  42. Sullivan BP, Salmon DJ, Meyer T (1978) Mixed phosphine 2,2′-bipyridine complexes of ruthenium. Inorg Chem 17:3334–3341

    Article  CAS  Google Scholar 

  43. Steck EA, Day AR (1943) Reactions of phenanthraquinone and retenequinone with aldehydes and ammonium acetate in acetic acid solution. J Am Chem Soc 65:452–456

    Article  CAS  Google Scholar 

  44. Wolfe A, Shimer GH, Mechan T (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 26:6392–6396

    Article  CAS  PubMed  Google Scholar 

  45. Mc Ghee JD, Von Hippel PH (1974) Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86:469–489

    Article  CAS  Google Scholar 

  46. Satyanarayana S, Dabrowiak JC, Chaires JB (1993) Tris (phenanthroline) ruthenium (II) enantiomer interactions with DNA: mode and specificity of binding. Biochemistry 32:2573–2584

    Article  CAS  PubMed  Google Scholar 

  47. Luzuriaga L, Cerda MF (2012) Analysis of the interaction between [Ru (phenanthroline)3]2+ and bovine serum albumin. Adv Biol Chem 2:262–267

    Article  CAS  Google Scholar 

  48. Seng HL, Von ST, Tan KW, Jamil MM, Ng SW, Zaliha RN, Abd Rahman R, Caracelli I (2010) Ng CH, Crystal structure, DNA binding studies, nucleolytic property and topoisomerase I inhibition of zinc complex with 1,10-phenanthroline and 3-methyl-picolinic acid. J Biometals 23:99–118

    Article  CAS  Google Scholar 

  49. Jones G, Willet P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53

    Article  CAS  PubMed  Google Scholar 

  50. Chaires JB, Dattagupta N, Crothers DM (1982) Selfassociation of daunomycin. Biochemistry 21:3927–3932

    Article  CAS  PubMed  Google Scholar 

  51. Liu XW, Shen YM, Lu JL, Chen YD, Li L, Zhang DS (2010) Synthesis, DNA-binding and photocleavage of “light switch” complexes [Ru(bpy)2(pyip)]2+ and [Ru(phen)2(pyip)]2+. Spectrochim Acta A Mol Biomol Spectrosc 77:522–527

    Article  PubMed  Google Scholar 

  52. Chen M, Li H, Li Q, Xu Z (2010) Luminescence properties of [Ru(bpy)2MDHIP]2+ modulated by the introduction of DNA, copper(II) ion and EDTA. Spectrochim Acta A Mol Biomol Spectrosc 75:1566–1570

    Article  PubMed  Google Scholar 

  53. Gale PA (2011) Anion receptor chemistry. Chem Commun (Camb) 47:82–86

    Article  CAS  Google Scholar 

  54. Gao F, Chao H, Zhou F, Yuan YX, Peng B, Ji LN (2006) DNA interactions of a functionalized ruthenium(II) mixed-polypyridyl complex [Ru(bpy)2ppd]2+. J Inorg Biochem 100:1487–1494

    Article  CAS  PubMed  Google Scholar 

  55. Ruanwas P, Chantrapromma S, Karalai C, Chidan Kumar CS (2015) Opt Spectrosc 118:67–72

    Article  CAS  Google Scholar 

  56. Tanious AF, Ding DY, Patrick DA, Bailly C, Tidwell RR, Wilson WD (2000) Effects of compound structure on carbazole dication − dna complexes: tests of the minor-groove complex models. Biochemistry 39:12091–12101

    Article  CAS  PubMed  Google Scholar 

  57. Zhong CY, Zhao J, Wu YB, Yin CX, Yang P (2007) Synthesis, characterization and studies on DNA-binding of a new Cu (II) complex with N1, N8-bis (l-methyl-4-nitropyrrole-2-carbonyl) triethylenetetramine. J Inorg Biochem 101:10–18

    Article  Google Scholar 

  58. Zhang QL, Liu JG, Chao H, Xue GQ, Ji LN (2001) DNA-binding and photocleavage studies of cobalt (III) polypyridyl complexes. J Inorg Biochem 83:49–55

    Article  CAS  PubMed  Google Scholar 

  59. Liu ZC, Wang BD, Li B, Wang Q, Yang ZY, Li TR, Li Y (2010) Crystal structures, DNA-binding and cytotoxic activities studies of Cu (II) complexes with 2-oxo-quinoline-3-carbaldehyde Schiff-bases. Eur J Med Chem 45:5353–5361

    Article  CAS  PubMed  Google Scholar 

  60. Mancin F, Scrimin P, Tecilla P, Tonellato U (2005) Artificial metallonucleases. Chem Commun 2540–2548

  61. Tjioe L, Meininger A, Joshi T, Spiccia L, Graham B (2011) Efficient plasmid DNA cleavage by copper (II) complexes of 1,4,7-triazacyclononane ligands featuring xylyl-linked guanidinium groups. Inorg Chem 50:4327–4339

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to UGC-UPE (FAR) Program Osmania University, Hyderabad for financial support and to CFRD, Osmania University for spectral analysis. They are also grateful to IICT, Hyderabad for providing Fluorescence spectroscopy instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyanarayana Sirasani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuradi, R.K., Putta, V.R., Nancherla, D. et al. Luminescent Behavior of Ru(II) Polypyridyl Morpholine Complexes, Synthesis, Characterization, DNA, Protein Binding, Sensor Effect of Ions/Solvents and Docking Studies. J Fluoresc 26, 689–701 (2016). https://doi.org/10.1007/s10895-015-1755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1755-2

Keywords

Navigation