Skip to main content
Log in

Synthesis and Sensor Activity of a PET-based 1,8-naphthalimide Probe for Zn2+ and pH Determination

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel blue-emitting 1,8-naphthalimide fluorophore designed as a molecular PET-based probe for determination of pH and detection of transition metal ions in the environment was successfully synthesized. Novel compound was configured on the “fluorophore-spacer-receptor” format. Due to the tertiary amine receptor the novel system showed “off-on” switching properties under the transition from alkaline to acid media (FE = 3.2) and in the presence of Zn2+ ions (FE = 2.5). The results obtained illustrate the high potential of the synthesized blue-emitting 1,8-naphthalimide fluorophore as an efficient pH chemosensing material and a selective probe for Zn2+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PET:

Photoinduced electron transfer

ICT:

Internal charge transfer

FE:

Fluorescence enhancement

References

  1. Sareen D, Kaur P, Singh K (2014) Strategies in detection of metal ions using dyes. Coord Chem Rev 265:125–154

    Article  CAS  Google Scholar 

  2. Bojinov V, Georgiev N (2011) Molecular sensor and molecular logic gates. J Univ Chem Technol Met (Sofia) 46:3–26

    CAS  Google Scholar 

  3. Georgiev N, Bryaskova R, Tzoneva R, Ugrinova I, Detrembleur C, Miloshev S, Asiri A, Qusti A, Bojinov V (2013) A novel pH sensitive water soluble fluorescent nanomicellar sensor for potential biomedical applications. Bioorg Med Chem 21:6292–6302

    Article  CAS  PubMed  Google Scholar 

  4. Li X, Gao X, Shi W, Ma H (2014) Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev 114:590–659

    Article  CAS  PubMed  Google Scholar 

  5. Brown G, de Silva A, James M, McKinney B, Pears D, Weir S (2008) Solid-bound, proton-driven, fluorescent “off-on-off” switches based on PET (photoinduced electron transfer). Tetrahedron 64:8301–8306

    Article  CAS  Google Scholar 

  6. Bojinov V, Konstantinova T (2007) Fluorescent 4-(2,2,6,6-tetramethylpiperidin-4-ylamino)-1,8-naphthalimide pH chemosensor based on photoinduced electron transfer. Sens Actuators B: Chem 123:869–876

    Article  CAS  Google Scholar 

  7. Bojinov V, Georgiev N, Nikolov P (2008) Design and synthesis of core and peripherally functionalized with 1,8-naphthalimide units fluorescent PAMAM dendron as light harvesting antenna. J Photochem Photobiol A Chem 197:281–289

    Article  CAS  Google Scholar 

  8. de Silva A, Uchiyama S (2011) Molecular logic gates and luminescent sensors based on photoinduced electron transfer. Top Curr Chem 300:1–28

    Article  PubMed  Google Scholar 

  9. Bojinov V, Panova I (2009) Novel 4-(2,2,6,6-tetramethylpiperidin-4-ylamino)-1,8-naphthalimide based yellow-green emitting fluorescence sensors for transition metal ions and protons. Dyes Pigments 80:61–66

    Article  CAS  Google Scholar 

  10. Bojinov V, Georgiev N, Bosch P (2009) Design and synthesis of highly photostable yellow-green emitting 1,8-naphthalimides as fluorescent sensors for metal cations and protons. J Fluoresc 19:127–139

    Article  CAS  PubMed  Google Scholar 

  11. Georgiev N, Dimov S, Asiri A, Alamry K, Obaid A, Bojinov V (2014) Synthesis, selective pH-sensing activity and logic behavior of highly water-soluble 1,8-naphthalimide and dihydroimidazonaphthalimide derivatives. J Lumin 149:325–332

    Article  CAS  Google Scholar 

  12. Ramachandram B, Saroja G, Sankaran N, Samanta A (2000) Unusually high fluorescence enhancement of some 1,8-naphthalimide derivatives induced by transition metal salts. J Phys Chem B 104:11824–11832

    Article  CAS  Google Scholar 

  13. Bojinov V, Panova I, Chovelon J-M (2008) Novel blue emitting tetra- and pentamethylpiperidin-4-yloxy-1,8-naphthalimides as photoinduced electron transfer based sensors for transition metal ions and protons. Sens Actuators B: Chem 135:172–80

    Article  CAS  Google Scholar 

  14. Falchuk K (1998) The molecular basis for the role of zinc in developmental biology. Mol Cell Biochem 188:41–48

    Article  CAS  PubMed  Google Scholar 

  15. Frederickson C, Koh J, Bush A (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    Article  CAS  PubMed  Google Scholar 

  16. Bush A, Pettingell W, Multhaup G, Paradis M, Vonsattel J-P, Gusella J, Beyreuther K, Masters C, Tanzi R (1994) Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 265:1464–1467

    Article  CAS  PubMed  Google Scholar 

  17. Walker C, Black R (2004) Zinc and the risk for infectious disease. Annu Rev Nutr 24:255–75

    Article  CAS  Google Scholar 

  18. Choi D, Koh J (1998) Zinc and brain injury. Annu Rev Neurosci 21:347–375

    Article  CAS  PubMed  Google Scholar 

  19. O’Halloran T (1993) Transition metals in control of gene expression. Science 261:715–725

    Article  PubMed  Google Scholar 

  20. Jin W, Jiang J, Wang X, Zhu X, Wang G, Song Y, Ba C (2011) Continuous intra-arterial blood pH monitoring in rabbits with acid–base disorders. Respir Physiol Neurobiol 177:183–188

    Article  PubMed  Google Scholar 

  21. Han J, Burgess K (2010) Fluorescent indicators for intracellular pH. Chem Rev 110:2709–2728

    Article  CAS  PubMed  Google Scholar 

  22. Li C, Zhou Y, Xu F, Li Y, Zou C, Weng C (2012) A fluorescent pH chemosensor based on functionalized naphthalimide in aqueous solution. Anal Sci 28:743–747

    Article  CAS  PubMed  Google Scholar 

  23. Bojinov V, Panova I, Simeonov D, Georgiev N (2010) Synthesis and sensor activity of photostable blue emitting 1,8-naphthalimides containing s-triazine UV absorber and HALS fragments. J Photochem Photobiol A Chem 210:89–99

    Article  CAS  Google Scholar 

  24. Panah H, Khosravi A, Gharanjig K (2010) Synthesis and characterization of new fluorescent polymerizable dyes based on naphthalimide. Iran Polym J 19:491–500

    CAS  Google Scholar 

  25. Bojinov V, Simeonov D (2010) Synthesis of highly photostable blue emitting 1,8-naphthalimides and their acrylonitrile copolymers. Polym Degrad Stab 95:43–52

    Article  CAS  Google Scholar 

  26. Martin E, Weigand R, Pardo A (1996) Solvent dependence of the inhibition of intramolecular charge-transfer in N-substituted 1,8-naphthalimide derivatives as dye lasers. J Lumin 68:157–164

    Article  CAS  Google Scholar 

  27. Zhang Y, Zhou C (2011) Synthesis and activities of naphthalimide azoles as a new type of antibacterial and antifungal agents. Bioorg Med Chem Lett 21:4349–4352

    Article  CAS  PubMed  Google Scholar 

  28. Ott I, Xu Y, Qian X (2011) Fluorescence properties and antiproliferative effects of mono-, bis-, and tris- thiophenylnaphthalimides: Results of a comparative pilot study. J Photochem Photobiol B Biol 105:75–80

    Article  CAS  Google Scholar 

  29. de Souza M, Correa R, Filho V, Grabchev I, Bojinov V (2002) 4-Nitro-1,8-naphthalimides exhibit antinociceptive properties. Pharmazie 56:430–431

    Google Scholar 

  30. Georgiev N, Asiri A, Qusti A, Alamry K, Bojinov V (2014) A pH sensitive and selective ratiometric PAMAM wavelength-shifting bichromophoric system based on PET, FRET and ICT. Dyes Pigments 102:35–45

    Article  CAS  Google Scholar 

  31. Bojinov V, Simeonov D, Georgiev N (2008) A novel blue fluorescent 4-(1,2,2,6,6-pentamethylpiperidin-4-yloxy)-1,8-naphthalimide pH chemosensor based on photoinduced electron transfer. Dyes Pigments 76:41–46

    Article  Google Scholar 

  32. Jiang J, Leng B, Xiao X, Zhao P, Tian H (2009) “Off-On-Off” fluorescent proton switch synthesized by RAFT polymerization. Polymer 50:5681–5684

    Article  CAS  Google Scholar 

  33. Georgiev N, Asiri A, Alamry K, Obaid A, Bojinov V (2014) Selective ratiometric pH-sensing PAMAM light-harvesting dendrimer based on Rhodamine 6G and 1,8-naphthalimide. J Photochem Photobiol A Chem 277:62–74

    Article  CAS  Google Scholar 

  34. Gan J, Song Q, Hou X, Chen K, Tian H (2004) 1,8-Naphthalimides for non-doping OLEDs: the tunable emission color from blue, green to red. J Photochem Photobiol A Chem 162:399–406

    Article  CAS  Google Scholar 

  35. Georgiev N, Bojinov V, Venkova A (2013) Design, synthesis and pH sensing properties of novel PAMAM light-harvesting dendrons based on rhodamine 6G and 1,8-naphthalimide. J Fluoresc 23:459–471

    Article  CAS  PubMed  Google Scholar 

  36. Marinova N, Bojinov V, Georgiev N (2011) Design, synthesis and pH sensing properties of novel 1,8-naphtalimide-based bichromophoric system. J Photochem Photobiol A Chem 222:132–140

    Article  CAS  Google Scholar 

  37. Georgiev N, Bojinov V, Marinova N (2010) Novel PAMAM light-harvesting antennae based on 1,8-naphthalimide: Synthesis, energy transfer, photophysical and pH sensing properties. Sens Actuators B: Chem 150:655–666

    Article  CAS  Google Scholar 

  38. Georgiev N, Bojinov V (2010) The design and synthesis of a novel 1,8-naphthalimide PAMAM light-harvesting dendron with fluorescence “off-on” switching core. Dyes Pigments 84:249–256

    Article  CAS  Google Scholar 

  39. Wang Y, Zhang X, Han B, Peng J (2010) The synthesis and photoluminescence characteristics of novel blue light-emitting naphthalimide derivatives. Dyes Pigments 86:190–196

    Article  CAS  Google Scholar 

  40. Grabchev I, Moneva I, Bojinov V, Guittonneau S (2000) Synthesis and properties of fluorescent 1,8-naphthalimide dyes for application in liquid crystal displays. J Mater Chem 10:1291–1296

    Article  CAS  Google Scholar 

  41. Ferreira R, Remon P, Pischel U (2009) Multivalued logic with a tristable fluorescent switch. J Phys Chem C 113:5805–5811

    Article  CAS  Google Scholar 

  42. Marinova N, Georgiev N, Bojinov V (2013) Facile synthesis, sensor activity and logic behaviour of 4-aryloxy substituted 1,8-naphthalimide. J Photochem Photobiol A Chem 254:54–61

    Article  CAS  Google Scholar 

  43. Georgiev N, Lyulev M, Bojinov V (2012) Sensor activity and logic behavior of PET based dihydroimidazonaphthalimide diester. Spectrochim Acta Part A 97:512–520

    Article  CAS  Google Scholar 

  44. Georgiev N, Yaneva I, Surleva A, Asiri A, Bojinov V (2013) Synthesis, sensor activity and logic behavior of a highly water-soluble naphthalimide derivative. Sens Actuators B: Chem 184:54–63

    Article  CAS  Google Scholar 

  45. Yang L, Yang W, Xu D, Zhang Z, Liu A (2013) A highly selective and sensitive Fe3+ fluorescent sensor by assembling three 1,8-naphthalimide fluorophores with a tris(aminoethylamine) ligand. Dyes Pigments 97:168–174

    Article  CAS  Google Scholar 

  46. Liu B, Tian H (2005) A ratiometric fluorescent chemosensor for fluoride ions based on a proton transfer signaling mechanism. J Mater Chem 15:2681–2686

    Article  CAS  Google Scholar 

  47. Brouwer A (2011) Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl Chem 83:2213–2228

    Article  CAS  Google Scholar 

  48. Georgiev N, Bojinov V, Nikolov P (2009) Design and synthesis of a novel pH sensitive core and peripherally 1,8-naphthalimide-labeled PAMAM dendron as light harvesting antenna. Dyes Pigments 81:18–26

    Article  CAS  Google Scholar 

  49. Bojinov V, Panova I (2008) Photo-stability of yellow-green emitting 1,8-naphthalimides containing built-in s-triazine UV absorber and HALS fragments and their acrylonitrile copolymers. Polym Degrad Stab 93:1142–1150

    Article  CAS  Google Scholar 

  50. Bojinov V, Panova I, Simeonov D (2008) Design and synthesis of polymerizable, yellow-green emitting 1,8-naphthalimides containing built-in s-triazine UV absorber and hindered amine light stabilizer fragments. Dyes Pigments 78:101–110

    Article  CAS  Google Scholar 

  51. Georgiev N, Bojinov V (2011) Design, synthesis and photostability of novel 1,8-naphthalimide PAMAM Light-harvesting dendrons. J Fluoresc 21:51–63

    Article  CAS  PubMed  Google Scholar 

  52. Georgiev N, Asiri A, Qusti A, Alamry K, Bojinov V (2014) Design and synthesis of pH-selective fluorescence sensing PAMAM light-harvesting dendrons based on 1,8-naphthalimides. Sens Actuators B: Chem 190:185–198

    Article  CAS  Google Scholar 

  53. Bojinov V, Georgiev N, Marinova N (2010) Design and synthesis of highly photostable fluorescence sensing 1,8-naphthalimide-based dyes containing s-triazine UV absorber and HALS units. Sens Actuators B: Chem 148:6–16

    Article  CAS  Google Scholar 

  54. Liu J, de Silva A (2012) Path-selective photoinduced electron transfer (PET) in a membrane-associated system studied by pH-dependent fluorescence. Inorg Chim Acta 381:243–246

    Article  CAS  Google Scholar 

  55. Georgiev N, Bojinov V (2012) Design, synthesis and sensor activity of a highly photostable blue emitting 1,8-naphthalimide. J Lumin 132:2235–2241

    Article  CAS  Google Scholar 

  56. Ramachandram B (2005) Fluorescence sensor design for transition metal ions: The role of the PIET interaction efficiency. J Fluoresc 15:71–83

    Article  Google Scholar 

  57. Bojinov V, Georgiev N, Nikolov P (2008) Synthesis and photophysical properties of fluorescence sensing ester- and amidoamine-functionalized 1,8-naphthalimides. J Photochem Photobiol A Chem 193:129–138

    Article  CAS  Google Scholar 

  58. Georgiev N, Bojinov V, Nikolov P (2011) The design, synthesis and photophysical properties of two novel 1,8-naphthalimide fluorescent pH sensors based on PET and ICT. Dyes Pigments 88:350–357

    Article  CAS  Google Scholar 

  59. Ramachandram B, Sankaran N, Karmakar R, Saha S, Samanta A (2000) Fluorescence signalling of transition metal ions by multi-component systems comprising 4-chloro-1,8-naphthalimide as fluorophore. Tetrahedron 56:7041–7044

    Article  CAS  Google Scholar 

  60. Soni M, Das S, Sahu P, Kar U, Rahaman A, Sarkar M (2013) Synthesis, photophysics, live cell imaging, and aggregation behavior of some structurally similar alkyl chain containing bromonaphthalimide systems: Influence of alkyl chain length on the aggregation behavior. J Phys Chem C 117:14338–14347

    Article  CAS  Google Scholar 

  61. Kasha M, Rawls H, El-Bayoumi M (1965) The exciton model in molecular spectroscopy. Pure Appl Chem 11:371–392

    Article  CAS  Google Scholar 

  62. Attia M, Youssef A, El-Sherif R (2014) Durable diagnosis of seminal vesicle and sexual gland diseases using the nano optical sensor thin film Sm-doxycycline complex. Anal Chim Acta 835:56–64

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of Bulgaria (project DDVU-02/97). Authors also acknowledge the Science Foundation at the University of Chemical Technology and Metallurgy (Sofia, Bulgaria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir B. Bojinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimov, S.M., Georgiev, N.I., Asiri, A.M. et al. Synthesis and Sensor Activity of a PET-based 1,8-naphthalimide Probe for Zn2+ and pH Determination. J Fluoresc 24, 1621–1628 (2014). https://doi.org/10.1007/s10895-014-1448-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1448-2

Keywords

Navigation