Skip to main content
Log in

A Simple and Selective Fluorescent Sensor for Zn2+ and H+ Ions in Aqueous Solution with OR Logic Gate Function

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The synthesis and properties of a new compound, viz., (N,N′-[1,10-phenanthroline-4,7-diyldi((E)methylylidene)]bis(1,10-phenanthrolin-5-amine) (1), is described. Compound 1 can be used as a selective fluorescent Zn2+ sensor in buffered solution. Furthermore, 1 induces turn on fluorogenic response to H+ ions. Finally, it is shown that an OR logic gate can be constructed with 1 by using Zn2+ and H+ as two-inputs.

In this paper, the design, synthesis and physicochemical properties of a new compound 1 based on 1,10-phenanthroline scaffold, is reported. It is noted that 1 can be used as a selective fluorescent Zn2+ sensor in 0.01 M HEPES buffer containing DMF (2 % v/v, pH = 7.4) at room temperature. Furthermore, the spectrophotometric results suggest that compound 1 can be used as a pH reporter in highly acidic conditions (pH < 5). Finally, it was also shown that an OR logic gate can be constructed with 1 by using Zn2+ and H+ as two-inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Czarnik AW (1993) Fluorescent chemosensors for ion and Molecule recognition. American Chemical Society, Washington DC

    Book  Google Scholar 

  2. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  3. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    CAS  PubMed  Google Scholar 

  4. Bush AI (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci 26:207–214

    Article  CAS  PubMed  Google Scholar 

  5. Chausmer AB (1998) Zinc, insulin and diabetes. J Am Coll Nutr 17:109–115

    Article  CAS  PubMed  Google Scholar 

  6. de Silva AP, Fox DB, Huxley AJM (2000) Combining luminescence, coordination and electron transfer for signalling purposes. Coord Chem Rev 205:41–57

    Article  Google Scholar 

  7. Qu L, Yin C, Huo F, Chao J, Zhang Y, Cheng F (2014) A pyridoxal-based dual chemosensor for visual detection of copper ion and ratiometric fluorescent detection of zinc ion. Sens Actuators, B 191:158–164

    Article  CAS  Google Scholar 

  8. Ma Y, Chen H, Wang F, Kambam S, Wang Y, Mao C, Chen X (2014) A highly sensitive and selective ratiometric fluorescent sensor for Zn2+ ion based on ICT and FRET. Dyes Pigments 102:301–307

    Article  CAS  Google Scholar 

  9. Wei TB, Zhang P, Shi BB, Chen P, Lin Q, Liu J, Zhang YM (2013) A highly selective chemosensor for colorimetric detection of Fe3+ and fluorescence turn-on response of Zn2+. Dyes Pigments 97:297–302

    Article  CAS  Google Scholar 

  10. Lin W, Buccella D, Lippard SJ (2013) Visualization of Peroxynitrite-Induced changes of Labile Zn2+ in the Endoplasmic Reticulum with Benzoresorufin-Based fluorescent probes. J Am Chem Soc 135:13512–13520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sarkar D, Pramanik AK, Mondal TK (2014) Coumarin based fluorescent ‘turn-on’ chemosensor for Zn2+: an experimental and theoretical study. J Lumin 146:480–485

    Article  CAS  Google Scholar 

  12. Tsay OG, Manjare ST, Kim H, Lee KM, Lee YS, Churchill DG (2013) Novel Reversible Zn2+-Assisted Biological Phosphate “Turn-On” Probing through Stable Aryl-hydrazone Salicylaldimine Conjugation That Attenuates Ligand Hydrolysis. Inorg Chem 52:10052–10061

    Article  CAS  PubMed  Google Scholar 

  13. Li K, Tong A (2013) A new fluorescent chemosensor for Zn2+ with facile synthesis: “turn-on” response in water at neutral pH and its application for live cell imaging. Sens Actuators, B 184:248–253

    Article  CAS  Google Scholar 

  14. Helal A, Rashid MHO, Choi CH, Kim HS (2012) New regioisomeric naphthol-substituted thiazole based ratiometric fluorescence sensor for Zn2+ with a remarkable red shift in emission spectra. Tetrahedron 68:647–653

    Article  CAS  Google Scholar 

  15. You QH, Chan PS, Chan WH, Hau SCK, Lee AWM, Mak NK, Mak TCW, Wong RNS (2012) A quinolinyl antipyrine based fluorescence sensor for Zn2+ and its application in bioimaging. RSC Adv:11078–11083

  16. Zhang B, Cao KS, Xu ZA, Yang ZQ, Chen HW, Huang W, Yin G, You XZ (2012) Cell-compatible fluorescent chemosensor for Zn2+ based on a 3,8-extended 1,10-phenanthroline derivative. Eur J Inorg Chem:3844–3851

  17. Yin S, Zhang J, Feng H, Zhao Z, Xu L, Qiu H, Tang B (2012) Zn2+-selective fluorescent turn-on chemosensor based on terpyridine-substituted siloles. Dyes Pigments 95:174–179

    Article  CAS  Google Scholar 

  18. Li YP, Yang HR, Zhao Q, Song WC, Han J, Bu XH (2012) Ratiometric and selective fluorescent sensor for Zn2+ as an “off–on–off” Switch and logic gate. Inorg Chem 51:9642–9648

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Y, Li ZX, Zang SQ, Zhu YY, Zhang HY, Hou HW, Mak TCW (2012) A novel sensitive turn-on fluorescent Zn2+ chemosensor based on an Easy to Prepare C 3-Symmetric Schiff-Base derivative in 100 % aqueous solution. Org Lett 14:1214–1217

    Article  CAS  PubMed  Google Scholar 

  20. Fu Y, Xing Z, Zhu C, Yang H, He W, Zhu C, Cheng Y (2012) A novel calixsalen macrocycle: metal sensing behavior for Zn2+ and intracellular imaging application. Tetrahedron Lett 53:804–807

    Article  CAS  Google Scholar 

  21. Gao C, Jin X, Yan X, An P, Zhang Y, Liu L, Tian H, Liu W, Yao X, Tang Y (2013) A small molecular fluorescent sensor for highly selectivity of zinc ion. Sens Actuators B 176:775–781

    Article  CAS  Google Scholar 

  22. Choi JY, Kim D, Yoon J (2013) A highly selective “turn-on” fluorescent chemosensor based on hydroxy pyrene–hydrazone derivative for Zn2+. Dyes Pigments 96:176–179

    Article  CAS  Google Scholar 

  23. Kim MJ, Kaur K, Singh N, Jang DO (2012) Benzimidazole-based receptor for Zn2+ recognition in a biological system: a chemosensor operated by retarding the excited state proton transfer. Tetrahedron 68:5429–5433

    Article  CAS  Google Scholar 

  24. Coskun A, Deniz E, Akkaya EU (2007) A sensitive fluorescent chemosensor for anions based on a styryl-boradiazaindacene framework. Tetrahedron Lett 48:5359–5361

    Article  CAS  Google Scholar 

  25. Aka FN, Akkaya MS, Akkaya EU (2001) Remarkable cooperative action of two zinc centers in the hydrolysis of plasmid DNA. J Mol Catal A-Chem 165:291–294

    Article  CAS  Google Scholar 

  26. Atilgan S, Ozdemir T, Akkaya EU (2008) A sensitive and selective ratiometric near IR fluorescent probe for zinc ions based on the distyryl-bodipy fluorophore. Org Lett 10:4065–4067

    Article  CAS  PubMed  Google Scholar 

  27. Accorsi G, Listorti A, Yoosaf K, Armaroli N (2009) 1,10-Phenanthrolines: versatile building blocks for luminescent molecules, materials and metal complexes. Chem Soc Rev 38:1690–1700

    Article  CAS  PubMed  Google Scholar 

  28. Yang C, Xu J, Chen W, Lu M, Li Y, Wang XJ (2014) A novel colorimetric and fluorescent sensor for fluoride detection based on a three-arm phenanthroline derivative. J Mater Sci 4:7040–7048

    Article  Google Scholar 

  29. Pamuk M, Algi F (2012) Synthesis of a novel on/off fluorescent cadmium(II) probe. Tetrahedron Lett 53:7010–7012

    Article  CAS  Google Scholar 

  30. Karakaya S, Algi F (2014) A novel dual channel responsive zinc(II) probe. Tetrahedron Lett 55:5555–5559

    Article  CAS  Google Scholar 

  31. Yoldas A, Algi F (2015) An imidazo-phenanthroline scaffold enables both chromogenic Fe(II) and fluorogenic Zn(II) detection. RSC Adv 5:7868–7873

    Article  CAS  Google Scholar 

  32. Algi MP (2016) A fluorescent hypochlorite probe Built on 1,10-phenanthroline scaffold and its ion recognition Features. J Fluoresc 26:487–496

    Article  CAS  PubMed  Google Scholar 

  33. Algi MP (2016) A highly selective dual channel hypochlorite probe based on fluorescein and 1,10-phenanthroline. Tetrahedron 72:1558–1565

    Article  CAS  Google Scholar 

  34. de Silva AP, Dixon IM, Gunaratne HQN, Gunnlaugsson T, Maxwell PRS, Rice TE (1999) Integration of logic Functions and Sequential Operation of Gates at the Molecular-Scale. J Am Chem Soc 121:1393–1394

    Article  Google Scholar 

  35. Feringa B (2001) For molecular logic systems, see: Molecular Switches; Ed.; Wiley-VCH: Weinheim, Germany, pp. 339–361.

  36. de Silva AP, Uchiyama S (2007) Molecular logic and computing. Nat. Nanotech 2:399–410

    Article  Google Scholar 

  37. Coskun A, Baytekin BT, Akkaya EU (2003) Novel fluorescent chemosensor for anions via modulation of oxidative PET: a remarkable 25-fold enhancement of emission. Tetrahedron Lett 44:5649–5651

    Article  CAS  Google Scholar 

  38. Turfan B, Akkaya EU (2002) Modulation of boradiazaindacene emission by cation-mediated oxidative PET. Org Lett 4:2857–2859

    Article  CAS  PubMed  Google Scholar 

  39. Liu T, Hu J, Yin J, Zhang Y, Li C, Liu S (2009) Enhancing detection sensitivity of responsive microgel-based Cu(II) chemosensors via thermo-induced volume phase transitions. Chem Mater 21:3439–3446

    Article  CAS  Google Scholar 

  40. de Silva AP, Gunaratne HQN, Gunnlaugsson T, McCoy CP, Maxwell PRS, Rademacher JT, Rice TE (1996) Photoionic devices with receptor-functionalized fluorophores. Pure Appl Chem 68:1443–1448

    Article  Google Scholar 

  41. de Silva AP, Moody TS, Wright GD (2009) Fluorescent PET (Photoinduced electron transfer) sensors as potent analytical tools. Analyst 134:2385–2393

    Article  PubMed  Google Scholar 

  42. de Silva AP (2012) Mid-infrared frequency combs. Nat Chem 4:440–449

    Article  PubMed  Google Scholar 

  43. Valeur B (2002) Molecular fluorescence: Principles and Applications. Wiley-VCH, Weinheim, Germany, p. 90

  44. Algi MP, Oztas Z, Algi F (2012) Triple channel responsive Cu2+ probe. Chem Commun 48:10219–10221

    Article  Google Scholar 

  45. Oztas Z, Pamuk M, Algi F (2013) Nonreaction-based fluorescent Au3+ probe that gives fast response in aqueous solution. Tetrahedron 69:2048–2051

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.P.A is indebted to Aksaray University for partial financial support of this work (ASU BAP 2015-092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melek Pamuk Algi.

Electronic supplementary material

ESM 1

(DOCX 1622 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algi, M.P. A Simple and Selective Fluorescent Sensor for Zn2+ and H+ Ions in Aqueous Solution with OR Logic Gate Function. J Fluoresc 26, 1083–1089 (2016). https://doi.org/10.1007/s10895-016-1798-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1798-z

Keywords

Navigation