Skip to main content
Log in

Fluorescence Interaction and Determination of Sulfathiazole with Trypsin

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The mechanism of interaction of trypsin with the sulfathiazole was studied through using fluorescence quenching and UV-visible absorption spectra at pH 7.4. The Stern-Volmer quenching constants, binding constants, number of binding sites and the corresponding thermodynamic parameters ΔHo, ΔSo and ΔGo were calculated at different temperatures. The effect of common metal ions on the constants was also discussed. The results suggest that sulfathiazole can interact strongly trypsin and that there is the formation of trypsin-sulfathiazole complex and the interaction can be explained on the basis of hydrogen bonds and van der Waals forces. The binding distance (r) between the donor (trypsin) and acceptor (sulfathiazole) was 3.52 nm based on the Förster’s non-radiative energy transfer theory. The detection and quantification limits of sulfathiazole were calculated as 2.52 and 8.40 μM in the presence of trypsin, respectively. The relative standard deviation (RSD) was 4.086 % for determinations (n = 7) of a sulfathiazole solution with the concentration of 7.54 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Muthu Prabhu AA, Venkatesh G, Rajendiran N (2010) Spectral characteristics of sulfa drugs: effect of solvents, pH and β-cyclodextrin. J Solut Chem 39:1061–1086

    Article  CAS  Google Scholar 

  2. Eremin SA, Murtazina NR, Ermolenko DN, Zherdev AV, Mart'ianov AA, Yazynina EV, Michura IV, Formanovsky AA, Dzantiev BB (2005) Production of polyclonal antibodies and development of fluorescence polarization immunoassay for sulfanilamide. Anal Lett 38:951–969

    Article  CAS  Google Scholar 

  3. Bani-Yaseen AD (2011) Spectrofluorimetric study on the interaction between antimicrobial drug sulfamethazine and bovine serum albumin. J Lumin 131:1042–1047

    Article  Google Scholar 

  4. Geng S, Liu G, Li W, Cui F (2013) Molecular interaction of ctDNA and HSA with sulfadiazine sodium by multi spectroscopic methods and molecular modeling. Lumin 28:785–792

    Article  CAS  Google Scholar 

  5. Bartlett AJ, Balakrishnan VK, Toito J, Brown LR (2013) Toxicity of four sulfonamide antibiotics to the freshwater amphipod Hyalella Azteca. Environ Toxicol Chem 32:866–875

    Article  CAS  PubMed  Google Scholar 

  6. Arroyo-Manzanares N, Gamiz-Gracia L, Garcia-Campana AM (2014) Alternative sample treatments for the determination of sulfonamides in milk by HPLC with fluorescence detection. Food Chem 143:459–464

    Article  CAS  PubMed  Google Scholar 

  7. Mor F, Şahindokuyucu Kocasarı F, Özdemir G, Öz B (2012) Determination of sulphonamide residues in cattle meats by the Charm-II system and validation with high performance liquid chromatography with fluorescence detection. Food Chem 134:1645–1649

    Article  CAS  PubMed  Google Scholar 

  8. Martel A-C, Zeggane S (2003) HPLC determination of sulfathiazole in French honeys. J Liq Chromatogr Relat Technol 26:953–961

    Article  CAS  Google Scholar 

  9. Chai J, Xu Q, Dai J, Liu R (2013) Investigation on potential enzyme toxicity of clenbuterol to trypsin. Spectrochim Acta A 105:200–206

    Article  CAS  Google Scholar 

  10. Zhang H-M, Wang Y-Q, Zhou Q-H (2009) Investigation of the interactions of quercetin and morin with trypsin. Lumin 24:355–362

    Article  CAS  Google Scholar 

  11. Wang Y-Q, Chen T-T, Zhang H-M (2010) Investigation of the interactions of lysozyme and trypsin with biphenol A using spectroscopic methods. Spectrochim Acta A 75:1130–1137

    Article  Google Scholar 

  12. Huang Y, Liu B, Yu Z, Zi Y (2010) Luminescence quenching effect for the interaction of prulifloxacin with trypsin–Britton–Robinson buffer solution system. J Lumin 130:360–364

    Article  CAS  Google Scholar 

  13. Zhang H-M, Zhou Q-H, Yang Y-Q, Wang Y-Q (2010) Investigation of the interaction between rutin and trypsin in solution by multi-spectroscopic method. Spectrosc Lett 43:183–191

    Article  CAS  Google Scholar 

  14. Zhang H-M, Zhou Q-H, Wang Y-Q (2010) Studies on the interactions of 2, 4-dinitrophenol and 2, 4-dichlorphenol with trypsin. J Fluoresc 20:507–516

    Article  CAS  PubMed  Google Scholar 

  15. Banerjee D, Das PK, Singha H, Bagchi S (2008) Fluorimetric study of interaction of merbromin with trypsin. Spectrochim Acta A 70:1109–1113

    Article  Google Scholar 

  16. Wang W-R, Zhu R-R, Xiao R, Liu H, Wang S-L (2011) The electrostatic interactions between nano-TiO2 and trypsin inhibit the enzyme activity and change the secondary structure of trypsin. Biol Trace Elem Res 142:435–446

    Article  CAS  PubMed  Google Scholar 

  17. Gao X, Tang G, Li Y, Su X (2012) A novel optical nanoprobe for trypsin detection and inhibitor screening based on Mn-doped ZnSe quantum dots. Anal Chim Acta 743:131–136

    Article  CAS  PubMed  Google Scholar 

  18. Yang B, Liu R, Hao X, Wu Y, Du J (2012) The interactions of glutathione-capped CdTe quantum dots with trypsin. Biol Trace Elem Res 146:396–401

    Article  CAS  PubMed  Google Scholar 

  19. Mu Y, Lin J, Liu R (2011) Interaction of sodium benzoate with trypsin by spectroscopic techniques. Spectrochim Acta A 83:130–135

    Article  CAS  Google Scholar 

  20. Shuai L, Chen Z, Fei P, Wang Q, Yang T (2014) Spectroscopic analysis on the interaction of ferulic acid and tetramethylpyrazine with trypsin. Luminescence 29:79–86

    Article  CAS  PubMed  Google Scholar 

  21. Wang R, Kang X, Wang R, Wang R, Dou H, Wu J, Song C, Chang J (2013) Comparative study of the binding of trypsin to caffeine and theophylline by spectrofluorimetry. J Lumin 138:258–266

    Article  CAS  Google Scholar 

  22. Wang J, Liu R, Qin P (2012) Toxic interaction between acid yellow 23 and trypsin: spectroscopic methods coupled with molecular docking. J Biochem Mol Toxicol 26(9):360–367

    Article  CAS  PubMed  Google Scholar 

  23. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Plenum, New York

    Book  Google Scholar 

  24. Zhang H–M, Wang Y–Q, Zhou Q–H (2010) Fluorimetric study of interaction of benzidine with trypsin. J Lumin 130:781–786

    Article  CAS  Google Scholar 

  25. Lu Y, Wang G, Lu X, Lv J, Xu M, Zhang W (2010) Molecular mechanism of interaction between norfloxacin and trypsin studied by molecular spectroscopy and modeling. Spectrochim Acta A 75:261–266

    Article  Google Scholar 

  26. Bi S, Ding L, Tian Y, Song D, Zhou X, Liu X, Zhang H (2004) Investigation of the interaction between flavonoids and human serum albumin. J Mol Struct 703:37–45

    Article  CAS  Google Scholar 

  27. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  CAS  PubMed  Google Scholar 

  28. Sahoo H (2011) Förster resonance energy transfer-a spectroscopic nanoruler: principle and applications (review). J Photochem Photobiol C Photochem Rev 12:20–30

    Article  CAS  Google Scholar 

  29. De S, Girigoswami A (2004) Fluorescence resonance energy transfer-A spectroscopic probe for organized surfactant media. J Colloid Interface Sci 271:485–495

    Article  CAS  PubMed  Google Scholar 

  30. Britton J, Antunes E, Nyokong T (2010) Fluorescence quenching and energy transfer in conjugates of quantum dots with zinc and indium tetraamino phthalocyanines. J Photochem Photobiol A Chem 210:1–7

    Article  CAS  Google Scholar 

  31. Matei I, Hillebrand M (2010) Interaction of kaempferol with human serum albumin: a fluorescence and circular dichroism study. J Pharm Biomed Anal 51:768–773

    Article  CAS  PubMed  Google Scholar 

  32. Zhu C, Zheng H, Li D, Li S, Xu J (2004) Fluorescence quenching method for the determination of sodium dodecyl sulphate with near-infrared hydrophobic dye in the presence of Triton X-100. Spectrochim Acta A 60:3173–3179

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmas Gökoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gökoğlu, E., Yılmaz, E. Fluorescence Interaction and Determination of Sulfathiazole with Trypsin. J Fluoresc 24, 1439–1445 (2014). https://doi.org/10.1007/s10895-014-1427-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1427-7

Keywords

Navigation