Skip to main content
Log in

Exploring Spectroscopic and Physicochemical Properties of New Fluorescent Ionic Liquids

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the current study, spectroscopic and physicochemical properties of newly prepared ionic liquids were investigated. Ionic liquids were synthesized via a simple and straightforward route using a metathesis reaction of either N,N-diethyl-p-phenylenediamine monohydrochloride or N-phenacylpyridinium bromide with bis(trifluoromethane)sulfonimide lithium in water. High yield and purity were obtained for the resultant ionic liquids. Data acquired by use of 1H NMR and FT-IR measurements were consistent with the chemical structures of newly prepared ionic liquids. Results of thermal gravimetric analysis also implied that these ionic liquids have good thermal stability. In addition, UV–vis and fluorescence spectroscopy measurements provided that new ionic liquids are good absorbent and fluorescent. Time-based fluorescence steady-state measurements showed that ionic liquids have high photostability against photobleaching. For a deeper mechanistic understanding of the analytical potential of newly synthesized ionic liquids, spectroscopic and physicochemical parameters, including singlet absorption, extinction coefficient, fluorescence quantum yield, Stokes shift, oscillator strength and dipole moment, were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pham TPT, Cho C-W, Yun Y-S (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372

    Article  PubMed  CAS  Google Scholar 

  2. Zhao Q, Anderson JL (2011) Task-specific microextractions using ionic liquids. Anal Bioanal Chem 400:1613–1618

    Article  PubMed  CAS  Google Scholar 

  3. Tran CD, Lacerda SHP (2002) Determination of binding constants of cyclodextrins in room-temperature ionic liquids by near-infrared spectrometry. Anal Chem 74:5337–5341

    Article  PubMed  CAS  Google Scholar 

  4. Tran CD, Lacerda SHP, Oliveira D (2003) Absorption of water by room-temperature ionic liquids: effect of anions on concentration and state of water. Appl Spectrosc 57:152–157

    Article  PubMed  CAS  Google Scholar 

  5. Sun P, Armstrong DW (2010) Ionic liquids in analytical chemistry. Anal Chim Acta 661:1–16

    Article  PubMed  CAS  Google Scholar 

  6. Poole CF, Poole SK (2010) Extraction of organic compounds with room temperature ionic liquids. J Chromatogr A 1217:2268–2286

    Article  PubMed  CAS  Google Scholar 

  7. Dupont J, de Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3692

    Article  PubMed  CAS  Google Scholar 

  8. Zeeb M, Ganjali MR, Norouzi P, Kalaee MR (2011) Separation and preconcentration system based on microextraction with ionic liquid for determination of copper in water and food samples by stopped-flow injection spectrofluorimetry. Food Chem Toxicol 49:1086–1091

    Article  PubMed  CAS  Google Scholar 

  9. Zhao H, Xia S, Ma P (2005) Use of ionic liquids as ‘green’ solvents for extractions. J Chem Technol Biotechnol 80:1089–1096

    Article  CAS  Google Scholar 

  10. Liu J-F, Jiang G-B, Liu J-F, Jönsson JÅ (2005) Application of ionic liquids in analytical chemistry. Trends Anal Chem 24:20–27

    Article  Google Scholar 

  11. Wei G-T, Yang Z, Chen C-J (2003) Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions. Anal Chim Acta 488:183–192

    Article  CAS  Google Scholar 

  12. Laszlo JA, Compton DL (2001) A-chymotrypsin catalysis in imidazolium-based ionic liquids. Biotechnol Bioeng 75:181–186

    Article  PubMed  CAS  Google Scholar 

  13. Tran CD, Oliveira D (2006) Fluorescence determination of enantiomeric composition of pharmaceuticals via use of ionic liquid that serves as both solvent and chiral selector. Anal Biochem 356:51–58

    Article  PubMed  CAS  Google Scholar 

  14. Quinn BM, Ding Z, Moulton R, Bard AJ (2002) Novel electrochemical studies of ionic liquids. Langmuir 18:1734–1742

    Article  CAS  Google Scholar 

  15. Wang P, Zakeeruddin SM, Comte P, Exnar I, Gratzel M (2003) Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J Am Chem Soc 125:1166–1167

    Article  PubMed  CAS  Google Scholar 

  16. Visser AE, Swatloski RP, Rogers RD (2000) pH-dependent partitioning in room temperature ionic liquids provides a link to traditional solvent extraction behavior. Green Chem 2:1–4

    Article  CAS  Google Scholar 

  17. Mwongela SM, Numan A, Gill NL, Agbaria RA, Warner IM (2003) Separation of achiral and chiral analytes using polymeric surfactants with ionic liquids as modifiers in micellar electrokinetic chromatography. Anal Chem 75:6089–6096

    Article  PubMed  CAS  Google Scholar 

  18. Han D, Tian M, Park DW, Choi DK, Row KH (2009) Application of ionic liquids as mobile phase additives and surface-bonded stationary phase in liquid chromatography. Korean J Chem Eng 26:1353–1358

    Article  CAS  Google Scholar 

  19. Marwani HM (2011) Selective separation and determination of lead based on silica gel developed by surface adsorbed new hydrophobic ionic liquid. J Disp Sci Technol doi: 10.1080/01932691.2011.653925, in press

  20. Seddon KR (2003) Ionic liquids: a taste of the future. Nat Mater 2:363–365

    Article  PubMed  CAS  Google Scholar 

  21. Pandey S (2006) Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta 556:38–45

    Article  PubMed  CAS  Google Scholar 

  22. Anderson JL, Ding J, Welton T, Armstrong DW (2002) Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc 124:14247–14254

    Article  PubMed  CAS  Google Scholar 

  23. Mandal PK, Saha S, Karmakar R, Samanta A (2006) Solvation dynamics in room temperature ionic liquids: dynamics stokes shift studies of fluorescence of dipolar molecules. Curr Sci 90:301–310

    CAS  Google Scholar 

  24. Samanta A (2006) Dynamic stokes shift and excitation wavelength dependent fluorescence of dipolar molecules in room temperature ionic liquids. J Phys Chem B 110:13704–13716

    Article  PubMed  CAS  Google Scholar 

  25. Mandal PK, Samanta A (2005) Fluorescence studies in a pyrrolidinium ionic liquid: polarity of the medium and solvation dynamics. J Phys Chem B 109:15172–15177

    Article  PubMed  CAS  Google Scholar 

  26. Lang B, Angulo G, Vauthey E (2006) Ultrafast solvation dynamics of coumarin 153 in imidazolium-based ionic liquids. J Phys Chem A 110:7028–7034

    Article  PubMed  CAS  Google Scholar 

  27. Abdul-Sada AK, Greenway AM, Seddon KR, Welton T (1992) Fast atom bombardment mass spectrometric evdence for the formation of tris{tetrachloroaluminate(III)}metallate(II) anions, [M(AlCl4)3], in acidic ambient temperature ionic liquids. Org Mass Spectrom 27:648–649

    Article  CAS  Google Scholar 

  28. Saha S, Hamaguchi H-O (2006) Effect of water on the molecular structure and arrangement of nitrile-functionalized ionic liquids. J Phys Chem B 110:2777–2781

    Article  PubMed  CAS  Google Scholar 

  29. Carmichael AJ, Hardacre C, Holbrey JD, Nieuwenhuyzen M, Seddon KR (1999) A method for studying the structure of low-temperature ionic liquids by XAFS. Anal Chem 71:4572–4574

    Article  CAS  Google Scholar 

  30. Tholey A, Zabet-Moghaddam M, Heinzle E (2006) Quantification of peptides for the monitoring of protease-catalyzed reactions by matrix-assisted laser desorption/ionization mass spectrometry using ionic liquid matrixes. Anal Chem 78:291–297

    Article  PubMed  CAS  Google Scholar 

  31. Marwani HM (2010) Spectroscopic evaluation of chiral and achiral fluorescent ionic liquids. Cent Eur J Chem 8:946–952

    Article  CAS  Google Scholar 

  32. Bwambok DK, Marwani HM, Fernand VE, Fakayode SO, Lowry M, Negulescu I, Strongin R, Warner IM (2008) Synthesis and characterization of novel chiral ionic liquids and investigation of their enantiomeric recognition properties. Chirality 20:151–158

    Article  PubMed  CAS  Google Scholar 

  33. Earle MJ, Gordon CM, Plechkova NV, Seddon KR, Welton T (2007) Decolorization of ionic liquids for spectroscopy. Anal Chem 79:758–764

    Article  PubMed  CAS  Google Scholar 

  34. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer/Plenum, New York

    Book  Google Scholar 

  35. Page PM, McCarty TA, Baker GA, Baker SN, Bright FV (2007) Comparison of dansylated aminopropyl controlled pore glass solvated by molecular and ionic liquids. Langmuir 23:843–849

    Article  PubMed  CAS  Google Scholar 

  36. Dzyuba SV, Bartsch RA (2002) Expanding the polarity range of ionic liquids. Tetrahedron Lett 43:4657–4659

    Article  CAS  Google Scholar 

  37. Chen RF (1967) Fluorescence quantum yields of tryptophan and tyrosine. Anal Lett 1:35–42

    Article  CAS  Google Scholar 

  38. Kirby EP, Steiner RF (1970) The influence of solvent and temperature upon the fluorescence of indole derivatives. J Phys Chem 74:4480–4490

    Article  CAS  Google Scholar 

  39. Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76:1260–1264

    Article  CAS  Google Scholar 

  40. Lippert E (1957) Spectroscopic determinations of the dipole moment of aromatic compounds in the first excited singlet state. Z Electrochem 61:962–975

    CAS  Google Scholar 

  41. Turro NJ (1965) Molecular photochemistry (frontiers in chemestry), 1st edn. W. A. Benjamin, Reading

    Google Scholar 

  42. Coe BJ, Harris JA, Asselberghs I, Clays K, Olbrechts G, Persoons A, Hupp JT, Johnson RC, Coles SJ, Hursthouse MB, Nakatani K (2002) Quadratic nonlinear optical properties of N-aryl stilbazolium dyes. Adv Funct Mater 12:110–116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to the Chemistry Department and the Center of Excellence for Advanced Materials Research at King Abdulaziz University for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi M. Marwani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marwani, H.M. Exploring Spectroscopic and Physicochemical Properties of New Fluorescent Ionic Liquids. J Fluoresc 23, 251–257 (2013). https://doi.org/10.1007/s10895-012-1142-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1142-1

Keywords

Navigation