Skip to main content
Log in

Synthesis, Spectral Characterization and Photoluminescence of 3-chloro-6-methoxy-2-(methylsulfanyl)quinoxaline in Different Solvents: An Experimental and Theoretical Investigation Using DFT

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the present work, we synthesized 3-chloro-6-methoxy-2-(methyl sulfanyl) quinoxaline (3MSQ) using a microwave-assisted synthesis method. The physicochemical structural analysis of the synthesized compound utilizing 1H-NMR, 13C-NMR, and FT-IR spectroscopy techniques. The photophysical properties of 3MSQ was examined through absorption and fluorescence spectroscopy. Spectroscopic analyses revealed a bathochromic shift in both absorption and fluorescence spectra, attributed to the π → π* transition. Ground and excited state dipole moments was experimentally determined using the solvatochromic shift method, employing various correlations such as Lippert’s, Bakhshiev’s, Kawski-Chamma-Viallet’s equations, and solvent polarity parameters. Our findings indicate that the excited state dipole moments exceed those of the ground state, suggesting increased polarity in the excited state. Further, the while detailed bond length, bond angles, dihedral angles, Mulliken charge distribution, ground state dipole moments and HOMO–LUMO energy gap estimated through ab initio computations using Gaussian-09W. The value of energy band gap obtained from both the methods are in good agreement. Furthermore, employing DFT computational analysis, we identified reactive centers such as electrophilic and nucleophilic sites using molecular electrostatic potential (MESP) 3D plots. Additionally, CIE chromaticity analysis was performed to understand the photoluminescent properties of 3MSQ. The insights derived from these analyses contribute to a better understanding of the molecule's electronic structure, photophysical properties, and solute–solvent interactions, thus providing valuable information regarding its behaviour and characteristics under diverse conditions. These results contribute to a comprehensive understanding of the molecular structure and properties of 3-chloro-6-methoxy-2-(methyl sulfanyl) quinoxaline (3MSQ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Huang Y, Cao X, Deng Y, Ji X, Sun W, Xia S, ... Ren C (2024) An overview on recent advances of reversible fluorescent probes and their biological applications. Talanta 268:125275

  2. Jun JV, Chenoweth DM, Petersson EJ (2020) Rational design of small molecule fluorescent probes for biological applications. Org Biomol Chem 18(30):5747–5763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Su S, Herron N, Meng H (2015) Organic small-molecule materials for organic light-emitting diodes. Organic Light-Emitting Materials and Devices, (2 ed.). CRC Press, Boca Raton, pp 309–488

    Google Scholar 

  4. Salahuddin A, Mazumder M, Shahar Yar R, Mazumder GS, Ahsan MJ, Rahman MU (2017) Updates on synthesis and biological activities of 1,3,4-oxadiazole: a review. Synth Commun 47(20):1805–1847

    Article  CAS  Google Scholar 

  5. Glomb T, Szymankiewicz K, Świątek P (2018) Anti-cancer activity of derivatives of 1,3,4-oxadiazole. Molecules 23:1–16

    Article  Google Scholar 

  6. De SS, Khambete MP, Degani MS (2019) Oxadiazole scaffolds in anti-tuberculosis drug discovery. Bioorganic Med Chem Lett 29(16):1999–2007

    Article  CAS  Google Scholar 

  7. Boström J, Hogner A, Llinàs A, Wellner E, Plowright AT (2012) Oxadiazoles in medicinal chemistry. J Med Chem 55(5):1817–1830

    Article  PubMed  Google Scholar 

  8. Pereira JA, Pessoa AM, Cordeiro MND, Fernandes R, Prudêncio C, Noronha JP, Vieira M (2015) Quinoxaline, its derivatives and applications: a state of the art review. Eur J Med Chem 97:664–672

    Article  CAS  PubMed  Google Scholar 

  9. Jeleń M, Bavavea EI, Pappa M, Kourounakis AP, Morak-Młodawska B, Pluta K (2015) Synthesis of quinoline/naphthalene-containing azaphenothiazines and their potent in vitro antioxidant properties. Med Chem Res 24:1725–1732

    Article  PubMed  Google Scholar 

  10. Das PJ, Sarkar SUDESHNA (2011) An efficient synthesis of quinoxalines in water mediated by tetraethyl ammonium bromate. Int J Chem Res 3(2):56–60

    Article  Google Scholar 

  11. Chauhan DS, Singh P, Quraishi MA (2020) Quinoxaline derivatives as efficient corrosion inhibitors: current status, challenges and future perspectives. J Mol Liq 320:114387

    Article  CAS  Google Scholar 

  12. Mahadik SS, Garud DR, Pinjari RV, Kamble RM (2022) Synthesis, optical, electrochemical and theoretical studies of 2, 3-Di (pyridin-2-yl) quinoxaline amine derivatives as blue-orange emitters for organic electronics. J Mol Struct 1248:131541

    Article  CAS  Google Scholar 

  13. Mahadik SS, Garud DR, Ware AP, Pingale SS, Kamble RM (2021) Design, synthesis and opto-electrochemical properties of novel donor-acceptor based 2, 3-di (hetero-2-yl) pyrido [2, 3-b] pyrazine amine derivatives as blue-orange fluorescent materials. Dyes Pigm 184:108742

    Article  CAS  Google Scholar 

  14. Farghaly TA, Alqurashi RM, Masaret GS, Abdulwahab HG (2023) Recent methods for the synthesis of quinoxaline derivatives and their biological activities. Mini Rev Med Chem. https://doi.org/10.2174/0113895575264375231012115026

  15. Montana M, Mathias F, Terme T, Vanelle P (2019) Antitumoral activity of quinoxaline derivatives: a systematic review. Eur J Med Chem 163:136–147

    Article  CAS  PubMed  Google Scholar 

  16. Heravi MM, Taheri S, Bakhtiari K, Oskooie HA (2007) On water: a practical and efficient synthesis of quinoxaline derivatives catalyzed by CuSO4· 5H2O. Catal Commun 8(2):211–214

  17. Patil AV, Lee WH, Lee E, Kim K, Kang IN, Lee SH (2011) Synthesis and photovoltaic properties of a low-band-gap copolymer of dithieno [3, 2-b: 2′, 3′-d] thiophene and dithienylquinoxaline. Macromolecules 44(6):1238–1241

    Article  CAS  Google Scholar 

  18. Phongphane L, Azmi MN (2023) Green is the new black: emerging environmentally friendly prospects in the synthesis of quinoxaline derivatives. Mini-Rev Org Chem 20(4):415–435

    Article  CAS  Google Scholar 

  19. Frizon TE, Duarte RC, Westrup JL, Perez JM, Menosso G, Duarte LG, ... Dal-Bó AG (2018) Synthesis, electrochemical, thermal and photophysical characterization of quinoxaline-based π-extended electroluminescent heterocycles. Dyes Pigm 157:218–229

    Article  CAS  Google Scholar 

  20. Mao X, Liu Y, Zeng J, Wang X, Islam MM, Chen M, ... Feng X (2022) Synthesis and photophysical properties of quinoxaline-based blue aggregation-induced emission molecules. Can J Chem 100(5):370–377

    Article  CAS  Google Scholar 

  21. Wu C, Wu M, Zhang B, MeiTing L, Wang D, Wu Y, ... Wu Z (2023) The effect of π-linker bulk on the photophysical properties of 2-phenylfuro [2, 3-b] quinoxaline-based FQ–π–FQ-type compounds. New J Chem 47(15):7182–7188

    Article  CAS  Google Scholar 

  22. Wang X, Li Y, Wu Y, Qin K, Xu D, Wang D, ... Wu Z (2022) A 2-phenylfuro [2, 3-b] quinoxaline-triphenylamine-based emitter: photophysical properties and application in TADF-sensitized fluorescence OLEDs. New J Chem 46(39):18854–18864

  23. Wu M, Wu C, Zhang B, Luo M, Gou L, Wang D (2024) The effect of molecular configuration and donor on the photophysical properties of 2-phenylfuro [2, 3-b] quinoxaline based emitters. New J Chem 48:4320–4327

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian-09, Revision B.01. Gaussian Inc, Wallingford, CT

    Google Scholar 

  25. Lippert EZ (1957) Spektroskopische bestimmung des dipolmomentes aromatischer verbindungen im ersten angeregten singulettzustand. Z Elektrochem 61:962–975

    CAS  Google Scholar 

  26. Mataga N, Kaifu Y, Koizumi M (1956) Solvent effects upon fluorescence spectra and the dipole moments of excited molecules. Bull Chem Soc Jpn 29:465–470

    Article  CAS  Google Scholar 

  27. Bakhshiev NG, Bakhshiev NG (1964) Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in 2-component solutions. Opt Spectrosc 16:821–832

    CAS  Google Scholar 

  28. Kawski A (2002) On the estimation of excited state dipole moments from solvatochromic shifts of absorption and fluorescence spectra. Z Naturforsch 57A:255–262

    Article  Google Scholar 

  29. Edward JT (1970) Molecular volumes and the Stokes-Einstein equation. J Chem Educ 47:261–270

    Article  CAS  Google Scholar 

  30. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358

    Article  CAS  Google Scholar 

  31. Ravi M, Soujanya T, Samanta A, Radhakrishnan TP (1995) Excited state dipole moments of some coumarin dyes from a solvatochromic method using the solvent polarity parameter. J Chem Soc Faraday Trans 91:2739–2742

    Article  Google Scholar 

  32. Catalan J (2009) Towards a generalized treatment of the solvent effect based on four empirical scales: dipolarity (SdP, a new scale), polarizability (SP), acidity (SA) and basicity (SB) of the medium. J Phys Chem B 113:5951–5960

    Article  CAS  PubMed  Google Scholar 

  33. Maridevarmath CV, Naik L, Negalurmath VS, Basanagouda M, Malimath GH (2019) Synthesis, characterization and photophysical studies on novel benzofuran-3-acetic acid hydrazide derivatives by solvatochromic and computational methods. J Mol Struct 1188:142–152

    Article  CAS  Google Scholar 

  34. Naik L, Maridevarmath CV, Khazi IAM, Malimath GH (2019) Photophysical and computational studies on optoelectronically active thiophene substituted 1, 3, 4-oxadiazole derivatives. J Photochem Photobiol, A 368:200–209

    Article  CAS  Google Scholar 

  35. Parkanyi C, Aaron JJ (1998) Dipole moments of aromatic heterocycles, theoretical and computational. Chemistry 5:233–258

    Google Scholar 

  36. Walki S, Malimath GH, Mahadevan KM, Naik S, Sutar SM, Savanur H, Naik L (2021) Synthesis, spectroscopic properties, and DFT correlative studies of 3, 3′-carbonyl biscoumarin derivatives. J Mol Struct 1243:130781

    Article  CAS  Google Scholar 

  37. Numbury SB (2022) Designing of small organic non-fullerene (NFAs) acceptor molecules with an A-D-A framework for high-performance organic solar cells: a DFT and TD-DFT method. Oxford Open Mater Sci 2:1–11. https://doi.org/10.1093/oxfmat/itac002

    Article  Google Scholar 

  38. Maridevarmath CV, Naik L, Negalurmath VS, Basanagouda M, Malimath GH (2019) Synthesis, photophysical, DFT and solvent effect studies on biologically active benzofuran derivative:(5-methyl-benzofuran-3-yl)-acetic acid hydrazide. Chem Data Collect 21:100221

    Article  CAS  Google Scholar 

  39. Renuka CG, Kumar A, Pramod AG et al (2019) Photophysical properties of novel fluorescent 1-(3-Hydroxy-benzofuran-2-yl)-benzo[f]chromen-3-one derivative: models for correlation solvent polarity scales. Can J Phys 97:548–557. https://doi.org/10.1139/cjp-2018-0116

    Article  CAS  Google Scholar 

  40. Pramod AG, Nadaf YF, Renuka CG (2019) Synthesis, photophysical, quantum chemical investigation, linear and non-linear optical properties of coumarin derivative: optoelectronic and optical limiting application. Spectrochim Acta - Part A: Mol Biomol Spectrosc 223:117288. https://doi.org/10.1016/j.saa.2019.117288

    Article  CAS  Google Scholar 

  41. Dong J, Li Y, Zheng W et al (2019) Lower power dependent upconversion multicolor tunable properties in TiO2:Yb3+/Er3+/ (Tm3+). Ceram Int 45:432–438. https://doi.org/10.1016/j.ceramint.2018.09.184

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Shahabuddin and Dr. Chandan Mitra, NCBS, GKVK campus, Bengaluru and DST-FIST Lab, Maharani Cluster University, Bengaluru, for their support during the work. The authors extend their thanks to Researchers Supporting Project Number (RSP2024R348), King Saud University, Riyadh, Saudi Arabia.

Funding

The authors received no financial support for the research to publish present research article.

Author information

Authors and Affiliations

Authors

Contributions

Suma M: Conceptualization; Data curation; Formal analysis; Software; Writing—original draft. Sushma G.N: Conceptualization; Software; Writing—original draft. S.S. Bellad: Resources. Narasimha Murthy V.N: Resources. Bandar Ali AlAsbahi: Roles/Writing—original draft; Writing—review & editing. Nadaf Y.F: Conceptualization; Data curation; Formal analysis; Investigation; Resources; Software; Supervision; Validation; Visualization; Roles/Writing—original draft; Writing—review & editing.

Corresponding author

Correspondence to Y. F. Nadaf.

Ethics declarations

Ethical Approval

It is not applicable for both human and/ or animal studies.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 592 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suma, M., Sushma, G.N., Bellad, S.S. et al. Synthesis, Spectral Characterization and Photoluminescence of 3-chloro-6-methoxy-2-(methylsulfanyl)quinoxaline in Different Solvents: An Experimental and Theoretical Investigation Using DFT. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03676-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03676-y

Keywords

Navigation