Skip to main content

Advertisement

Log in

Singlet Oxygen Generation Enhanced by Silver-Pectin Nanoparticles

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We demonstrate the potential application of silver-pectin nanoparticles on photodynamic therapy, on a solution-base platform. Photodynamic therapy is a medical technique which uses a combination of photosensitizing drugs and light to induce selective damage on the target tissue, by electronically excited and highly reactive singlet state of oxygen. Metal enhanced singlet oxygen generation in riboflavin water solution with silver-pectin nanoparticles was observed and quantified. Here 13 nm silver nanospheres enclosed by a pectin layer were synthesized and it interaction with riboflavin molecule was analyzed. Pectin, a complex carbohydrate found in plants primary cell walls, was used to increase the biocompatibility of the silver nanoparticles and to improve metal enhanced singlet oxygen generation (28.5 %) and metal-enhanced fluorescence (30.7 %) processes at room temperature. The singlet oxygen sensor fluorescent green reagent was used to quantify the enhancement of the riboflavin singlet oxygen production induced by the silver colloid. We report a 1.7-fold increase of riboflavin emission and a 1.8-fold enhancement of singlet oxygen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemoth 42:13–28. doi:10.1093/jac/42.1.13

    Article  CAS  Google Scholar 

  2. Via LD, Magno SM (2001) Photochemotherapy in the treatment of cancer. Curr Med Chem 8:405–1418. doi:10.2174/0929867013372076

    Google Scholar 

  3. Simplício FI, Maionchi F, Hioka N (2002) Terapia fotodinâmica: aspectos farmacológicos, aplicações e avanços recentes no desenvolvimento de medicamentos. Quim Nova 25:801–807. doi:10.1590/S0100-40422002000500016

    Article  Google Scholar 

  4. Calin MA, Parasca SV (2006) Photodynamic therapy in oncology. J Optoelectron Adv M 8:1173–1179

    Google Scholar 

  5. Meisel P, Kocher T (2005) Photodynamic therapy for periodontal diseases: state of the art. J Photochem Photobio B 79:159–170. doi:10.1016/j.jphotobiol.2004.11.023

    Article  CAS  Google Scholar 

  6. Brown SB, Brown EA, Walke I (2004) The present and future role of photodynamic therapy in cancer treatment. Oncology 5:497–508. doi:10.1016/S1470-2045(04)01529-3

    PubMed  CAS  Google Scholar 

  7. Wainwright M, Crossley KB (2004) Photosensitising agents—circumventing resistance and breaking down biofilms: a review. Int Biodeter Biodgr 53:119–126. doi:10.1016/j.ibiod.2003.11.006

    Article  CAS  Google Scholar 

  8. O’Riordan K, Akilov OE, Hasan T (2005) The potential for photodynamic therapy in the treatment of localized infections. Photodiagn Photodyn Ther 2:247–262. doi:10.1016/S1572-1000(05)00099-2

    Article  Google Scholar 

  9. Jori G, Fabris C, Soncin M, Ferro S, Coppellotti O, Dei D, Fantetti L, Chiti G, Roncucci G (2006) Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Laser Surg Med 38:468–481. doi:10.1002/lsm.20361

    Article  Google Scholar 

  10. Boylet RW, Dolphin D (1996) Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol 64:469–485. doi:10.1111/j.1751-1097.1996.tb03093.x

    Article  Google Scholar 

  11. Chan WM, Lam DSC, Lai TYY, Tam BSM, Liu DTL, Chan CKM (2003) Choroidal vascular remodelling in central serous chorioretinopathy after indocyanine green guided photodynamic therapy with verteporfin: a novel treatment at the primary disease level. Br J Ophthalmol 87:1453–1458. doi:10.1136/bjo.87.12.1453

    Article  PubMed  Google Scholar 

  12. Zhang Y, Aslan K, Previte MJR, Geddes CD (2007) Metal-enhanced singlet oxygen generation: a consequence of plasmon enhanced triplet yields. J Fluoresc 17:345–349. doi:10.1007/s10895-007-0196-y

    Article  PubMed  CAS  Google Scholar 

  13. Ion RM, Planner A, Wicktowicz K, Frakowiak D (1998) The incorporation of various porphyrins into blood cells measures via flow cytometry, absorption and emission spectroscopy. Acta Biochim Pol 45:833–845

    PubMed  CAS  Google Scholar 

  14. Ochsner M (1997) New trends in photobiology (Invited review): photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobio B 39:1–18. doi:10.1016/S1011-1344(96)07428-3

    Article  CAS  Google Scholar 

  15. Ion RM (2007) Photodynamic therapy (PDT): a photochemical concept with medical applications. Rev Roum Chim 52:1093–1102. doi:10.1002/chin.200849276

    CAS  Google Scholar 

  16. Bonnett R, White RD, Winfield UJ, Berenbaum MC (1989) Hydroporphyrins of the meso-tetra(hydroxyphenyl)porphyrin series as tumour photosensitizers. Biochem J 261:277–280

    PubMed  CAS  Google Scholar 

  17. Allison RR, Downie GH, Cuenca R, Hu XH, Childs CJH, Sibata CH (2004) Photosensitizers in clinical PDT. Photodiagn Photodyn Ther 1:27–42. doi:10.1016/S1572-1000(04)00007-9

    Article  CAS  Google Scholar 

  18. Tang W, Xu H, Kopelman R, Philbert MA (2005) Photodynamic characterization and In vitro application of methylene blue-containing nanoparticles plataforms. Photochem Photobiol 81:242–249. doi:10.1111/j.1751-1097.2005.tb00181.x

    Article  PubMed  CAS  Google Scholar 

  19. Martins SAR, Combs JC, Noguera G, Camacho W, Wittmann P, Walther R, Cano M, Dick J, Behrens A (2008) Antimicrobial efficacy of riboflavin/UVA combination (365 nm) In vitro for bacterial and fungal isolates: a potential new treatment for infectious keratitis. IOVS 49:3402–3408. doi:10.1167/iovs.07-1592

    Google Scholar 

  20. Powers HJ (2003) Riboflavin (vitamin B-2) and health. Am J Clin Nutr 77:1352–1360

    PubMed  CAS  Google Scholar 

  21. Pass HI (1993) Photodynamic therapy in oncology: mechanisms and clinical use. J Natl Cancer I 85:443–456. doi:10.1093/jnci/85.6.443

    Article  CAS  Google Scholar 

  22. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer I 90:889–905. doi:10.1093/jnci/90.12.889

    Article  CAS  Google Scholar 

  23. Zhang Y, Aslan K, Previte MJR, Geddes CD (2008) Plasmonic engineering of singlet oxygen generation. PNAS 105:1798–1802. doi:10.1073/pnas.0709501105

    Article  PubMed  CAS  Google Scholar 

  24. Cai H, Xu Y, Zhu N, He P, Fang Y (2002) An electrochemical DNA hybridization detection assay based on a silver nanoparticle label. Analyst 127:803–808. doi:10.1039/B200555G

    Article  PubMed  CAS  Google Scholar 

  25. Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643. doi:10.1021/ja034775u

    Article  PubMed  CAS  Google Scholar 

  26. Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–754. doi:10.1038/nbt1100

    Article  PubMed  Google Scholar 

  27. Hu Y, Fine DH, Tasciotti E, Bouamrani A, Ferrari M (2011) Nanodevices in diagnostics. Nanomed Nanobiotech 3:11–32. doi:10.1002/wnan.82

    Article  CAS  Google Scholar 

  28. Lakowicz JR, Shen B, Gryczynski Z, D’auria S, Gryczynfor I (2001) Intrinsic fluorescence from DNA can be enhanced by metallic particles. Biochem Biophys Res Co 286:875–879. doi:10.1006/bbrc.2001.5445

    Article  CAS  Google Scholar 

  29. Geddes CD, Lakowicz JR (2002) Metal-enhanced fluorescence. J Fluoresc 12:121–129. doi:10.1023/A:1016875709579

    Article  Google Scholar 

  30. Lakowicz JR, Shen Y, D’Auria S, Malicka J, Fang J, Gryczynski Z, Gryczynsk I (2002) Radiative decay engineering 2: effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301:261–277. doi:10.1006/abio.2001.5503

    Article  PubMed  CAS  Google Scholar 

  31. Malicka J, Gryczynski I, Lakowicz JR (2003) DNA hybridization assays using metal-enhanced fluorescence. Biochem Bioph Res Co 20:213–218. doi:10.1016/S0006-291X(03)00935-5

    Article  Google Scholar 

  32. Rativa D, Gomes ASL, Wachsmann-Hogiu S, Farkas DL, Araujo RE (2008) Nonlinear excitation of Tryptophan emission enhanced by silver nanoparticles. J Fluoresc 18:1151–1155. doi:10.1007/s10895-008-0366-6

    Article  PubMed  CAS  Google Scholar 

  33. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS 100:13549–13554. doi:10.1073/pnas.2232479100

    Article  PubMed  CAS  Google Scholar 

  34. Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3:33–40

    PubMed  CAS  Google Scholar 

  35. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711. doi:10.1021/nl050127s

    Article  PubMed  CAS  Google Scholar 

  36. Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley LM, Xia Y (2008) Gold nanocages: synthesis, properties, and applications. Accounts Chem Res 41:1587–1595. doi:10.1021/ar800018v

    Article  CAS  Google Scholar 

  37. Landfester K, Musyanovych A, Mailander V (2010) From polymeric particles to multifunctional nanocapsules for biomedical applications using the miniemulsion process. J Polym Sci A 48:493–515. doi:10.1002/pola.23786

    Article  CAS  Google Scholar 

  38. Fishman M, Jen JJ (1986) Chemistry and function of pectins. American Chemical Society, Washington

    Book  Google Scholar 

  39. Baier J, Maisch T, Maier M, Engel E, Landthaler M, Baumler W (2006) Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophys J 91:1452–1459. doi:10.1529/biophysj.106.082388

    Article  PubMed  CAS  Google Scholar 

  40. Penzer GR, Radda GK (1967) The chemistry and biological function of isoalloxazines (Flavines). Q Rev Chem Soc 21:47–65

    Article  Google Scholar 

  41. Oster BG, Bellin JS, Holmstrom B (1962) Photochemistry of riboflavin. Cell Mol Life Sci 18:249–296. doi:10.1007/BF02148213

    Article  CAS  Google Scholar 

  42. Steele RH, Cusachs LC (1967) Energy terms of oxygen and riboflavin – a biological quantum leader? Nature 213:800–801. doi:10.1038/213800a0

    Article  PubMed  CAS  Google Scholar 

  43. Molecular Probes (2004) Product information http://probesinvitrogen.com/media/pis/mp36002.pdf?id=mp36002

  44. Flors C, Fryer J, Waring J, Reeder B, Bechtold U, Mullineaux PM, Nonell S, Wilson MT, Baker R (2006) Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green. J Exp Bot 57:1725–1734. doi:10.1093/jxb/erj181

    Article  PubMed  CAS  Google Scholar 

  45. Kumar S, Adams WW (1990) Electron beam damage in high temperature polymers. Polymer 31:15–19. doi:10.1016/0032-3861(90)90341-U

    Article  CAS  Google Scholar 

  46. Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 15:171–194. doi:10.1016/j.ab.2004.11.026

    Article  Google Scholar 

  47. Zhang Y, Aslan K, Malyn SN, Geddes CD (2006) Metal-enhanced phosphorescence (MEP). Chem Phys Lett 427:432–437. doi:10.1016/j.cplett.2006.06.078

    Article  CAS  Google Scholar 

  48. Zhang Y, Aslan K, Previte MJR, Malyn SN, Geddes CD (2006) Metal-enhanced phosphorescence: interpretation in terms of triplet-coupled radiating plasmons. J Phys Chem B 110:25108–25114. doi:10.1021/jp065261v

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support through the National Institute of Science and Technology of Photonics (INCT de Fotônica), to the Programa de Núcleos de Excelência (PRONEX-FACEPE/CNPq). We acknowledge the Laboratory of Non Conventional Polymers (UFPE) for the ISS equipment used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato E. de Araujo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Melo, L.S.A., Gomes, A.S.L., Saska, S. et al. Singlet Oxygen Generation Enhanced by Silver-Pectin Nanoparticles. J Fluoresc 22, 1633–1638 (2012). https://doi.org/10.1007/s10895-012-1107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1107-4

Keywords

Navigation