Skip to main content
Log in

Glycosylated Quantum Dots for the Selective Labelling of Kluyveromyces bulgaricus and Saccharomyces cerevisiae Yeast Strains

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Highly fluorescent CdTe quantum dots (QDs) stabilized by thioglycolic acid (TGA) were prepared by an aqueous solution approach and used as fluorescent labels in detecting yeast cells. Sugars (mannose, galactose or glucose) were adsorbed on CdTe@TGA QDs and the interaction of these nanoparticles with yeast cells was studied by fluorescence microscopy. Results obtained demonstrate that galactose and mannose functionalized QDs associate respectively with Kluyveromyces bulgaricus and Saccharomyces cerevisiae yeast strains due to saccharide/lectin specific recognition. Glucose-functionalized CdTe QDs, which are not recognized by cell lectins, preferentially localize in the bud scars of S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bruchez MJr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  PubMed  Google Scholar 

  2. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  PubMed  Google Scholar 

  3. Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    Article  CAS  PubMed  Google Scholar 

  4. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  PubMed  Google Scholar 

  5. Weng J, Ren J (2006) Luminescent quantum dots: a very attractive and promising tool in biomedicine. Curr Med Chem 13:897–909

    Article  CAS  PubMed  Google Scholar 

  6. Sun QJ, Wang YA, Li LS, Wang DY, Zhu T, Xu J, Yang CH, Li YF (2007) Bright, multicoloured light-emitting diodes based on quantum dots. Nat Photonics 1:717–722

    Article  CAS  Google Scholar 

  7. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732

    Article  CAS  PubMed  Google Scholar 

  8. Romero MJ, van de Lagemaat J, Mora-Sero I, Rumbles G, Al-Jassim MM (2006) Imaging of resonant quenching of surface plasmons by quantum dots. Nano Lett 6:2833–2837

    Article  CAS  PubMed  Google Scholar 

  9. Yong K-T, Roy I, Pudavar HE, Bergey EJ, Tramposch KM, Swihart MT, Prasad PN (2008) Multiplex imaging of pancreatic cancer cells by using functionalized quantum rods. Adv Mater 20:1412–1417

    Article  CAS  Google Scholar 

  10. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  PubMed  Google Scholar 

  11. Hild WA, Breunig M, Goepferich A (2008) Quantum dots−Nano-sized probes for the exploration of cellular and intracellular targeting. Eur J Pharm Biopharm 68:153–168

    Article  CAS  PubMed  Google Scholar 

  12. Xu G, Yong K-T, Roy I, Mahajan SD, Ding H, Schwartz SA, Prasad PN (2008) Bioconjugated quantum rods as targeted probes for efficient transmigration across an in vitro blood−brain barrier. Bioconjugate Chem 19:1179–1185

    Article  CAS  Google Scholar 

  13. Somers RC, Bawendi MG, Nocera DG (2007) CdSe nanocrystal based chem-/bio-sensors. Chem Soc Rev 36:579–591

    Article  CAS  PubMed  Google Scholar 

  14. Howarth M, Liu W, Puthenveetil S, Zheng Y, Marshall LF, Schmidt MM, Wittrup KD, Bawendi MG, Ting AY (2008) Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods 5:397–399

    Article  CAS  PubMed  Google Scholar 

  15. Liu W, Howarth M, Greytak AB, Zheng Y, Nocera DG, Ting AY, Bawendi MG (2008) Compact biocompatible quantum dots functionalized for cellular imaging. J Am Chem Soc 130:1274–1284

    Article  CAS  PubMed  Google Scholar 

  16. PMA De farias, Santos BS, Menezes FD, Brasil AGJr, Ferreira R, Motta MA, Castro-Neto AG, Vieira AAS, Silva DCN, Fontes A, Cesar CL (2007) Highly fluorescent semiconductor core-shell CdTe-CdS nanocrystals for monitoring living yeast cells activity. Appl Phys A 89:957–961

    Article  CAS  Google Scholar 

  17. Niikura K, Nishio T, Akita H, Matsuo Y, Kamitani R, Kogure K, Harashima H, Ijiro K (2007) Accumulation of O-GlcNAc-displaying CdTe quantum dots in cells in the presence of ATP. ChemBioChem 8:379–384

    Article  CAS  PubMed  Google Scholar 

  18. Higuchi Y, Oka M, Kawakami S, Hashida M (2008) Mannosylated semiconductor quantum dots for the labeling of macrophages. J Control Release 125:131–136

    Article  CAS  PubMed  Google Scholar 

  19. Jiang X, Ahmed M, Deng Z, Narain R (2009) Biotinylated glyco-functionalized quantum dots: synthesis, characterization, and cytotoxicity studies. Bioconjugate Chem 20:994–1001

    Article  CAS  Google Scholar 

  20. Kikkeri R, Lepenies B, Adibekian A, Laurino P, Seeberger PH (2009) In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots. J Am Chem Soc 131:2110–2112

    Article  CAS  PubMed  Google Scholar 

  21. Mukhopadhyay B, Martins MB, Karamanska R, Russell DA, Field RA (2009) Bacterial detection using carbohydrate-functionalised CdS quantum dots: a model study exploiting E. coli recognition of mannosides. Tetrahedron Lett 50:886–889

    Article  CAS  Google Scholar 

  22. Chen Y, Ji T, Rosenzweig Z (2003) Synthesis of glyconanospheres containing luminescent CdSe—ZnS quantum dots. Nano Lett 3:581–584

    Article  CAS  Google Scholar 

  23. Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y (2004) A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J Am Chem Soc 126:6520–6521

    Article  CAS  PubMed  Google Scholar 

  24. Robinson A, Fang J-M, Chou P-T, Liao K-W, Chu R-M, Lee S-L (2005) Probing lectin and sperm with carbohydrate-modified quantum dots. ChemBioChem 6:1899–1905

    Article  CAS  PubMed  Google Scholar 

  25. Gill R, Bahshi L, Freeman R, Willner I (2008) Optical detection of glucose and acetylcholine esterase inhibitors by H2O2-sensitive CdSe/ZnS quantum dots. Angew Chem Int Ed 47:1676–1679

    Article  CAS  Google Scholar 

  26. Babu P, Sinha S, Surolia A (2007) Sugar−quantum dot conjugates for a selective and sensitive detection of lectins. Bioconjugate Chem 18:146–151

    Article  CAS  Google Scholar 

  27. Al-Mahmood S, Colin S, Bonaly R (1991) Kluyveromyces bulgaricus yeast lectins. Isolation of two galactose-specific lectin forms from the yeast cell wall. J Biol Chem 266:20882–20887

    CAS  PubMed  Google Scholar 

  28. El-Behhari M, Géhin G, Coulon J, Bonaly R (2000) Evidence for a lectin in Kluyveromyces sp. that is involved in co-flocculation with Schizosaccharomyces pombe. FEMS Microbiol Lett 184:41–46

    Article  CAS  PubMed  Google Scholar 

  29. Géhin G, Coulon J, Coleman A, Bonaly R (2001) Isolation and biochemical characterization of cell wall tight protein complex involved in self-flocculation of Kluyveromyces bulgaricus. Antonie van Leeuwenhock 80:225–236

    Article  Google Scholar 

  30. Miki BL, Poon SH, Seligy VL (1982) Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae. J Bacteriol 150:878–889

    CAS  PubMed  Google Scholar 

  31. Kuriyama H, Umeda I, Kobayashi H (1991) Role of cations in the flocculation of Saccharomyces cerevisiae and discrimination of the corresponding proteins. Can J Microbiol 37:397–403

    Article  CAS  PubMed  Google Scholar 

  32. Javadekar VS, Sivaraman H, Sainkar SR, Khan MI (2000) A mannose-binding protein from the cell surface of flocculent Saccharomyces cerevisiae (NCIM 3528): its role in flocculation. Yeast 16:99–110

    Article  CAS  PubMed  Google Scholar 

  33. Straver MH, Traas VM, Smit G, Kijne JW (1994) Isolation and partial purification of mannose-specific agglutinin from brewer’s yeast involved in flocculation. Yeast 10:1183–1193

    Article  CAS  PubMed  Google Scholar 

  34. Viard B, Al-Mahmood S, Streiblova E, Bonaly R (1993) Alternate interactions of the D-galactose-specific yeast lectin Kb-CWL I with sensitive yeast strains. FEMS Microbiol Lett 107:17–23

    CAS  PubMed  Google Scholar 

  35. Coulon J, Thiebault F, Contino C, Polidora A, Bonaly R, Pucci B (2000) Permeability of yeast cell envelope to fluorescent galactosylated telomers derived from THAM Bioconjugate. Chem 11:461–468

    CAS  Google Scholar 

  36. Li L, Qian H, Fang N, Ren J (2006) Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions. J Luminescence 116:59–66

    Article  CAS  Google Scholar 

  37. Aldeek F, Balan L, Lambert J, Schneider R (2008) The influence of capping thioalkyl acid on the growth and photoluminescence efficiency of CdTe and CdSe quantum dots. Nanotechnology 19:475401

    Article  CAS  Google Scholar 

  38. Crosby GA, Demas JN (1971) Measurement of photoluminescence quantum yields. Review J Phys Chem 75:991–1024

    Article  CAS  Google Scholar 

  39. Gao M, Kirstein S, Möhwald H, Rogach AL, Kornowski A, Eychmüller A, Weller H (1998) Strongly photoluminescent CdTe nanocrystals by proper surface modification. J Phys Chem B 102:8360–8363

    Article  CAS  Google Scholar 

  40. Li L, Qian HF, Ren JC (2005) Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature. Chem Commun 4:528–530

    Google Scholar 

  41. Lu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  42. Ebenstein Y, Nahum E, Banin U (2002) Tapping mode atomic force microscopy for nanoparticle sizing: Tip—sample interaction effects. Nano Lett 2:945–950

    Article  CAS  Google Scholar 

  43. Pinaud F, King D, Moore H-P, Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126:6115–6123

    Article  CAS  PubMed  Google Scholar 

  44. Borchert H, Talapin DV, Gaponik N, Mc Ginley C, Adam S, Lobo A, Möller T, Weller H (2003) Relations between the photoluminescence efficiency of CdTe nanocrystals and their surface properties revealed by synchrotron XPS. J Phys Chem B 107:9662–9668

    Article  CAS  Google Scholar 

  45. Lei Y, Jiang C, Liu S, Miao Y, Zou B (2006) A clean route for preparation of CdTe nanocrystals and their conjugation with bacterium. J Nanosci Nanotech 6:3784–3788

    Article  CAS  Google Scholar 

Download references

Achnowledgements

The authors thank Dr. Raphaël Duval (SRSMC-Nancy University) for facilitating imaging experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joël Coulon or Raphaël Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coulon, J., Thouvenin, I., Aldeek, F. et al. Glycosylated Quantum Dots for the Selective Labelling of Kluyveromyces bulgaricus and Saccharomyces cerevisiae Yeast Strains. J Fluoresc 20, 591–597 (2010). https://doi.org/10.1007/s10895-009-0590-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0590-8

Keywords

Navigation