Skip to main content
Log in

Transport Properties of a Rarefied Ch4–N2 Gas Mixture

  • THERMOPHYSICAL PROPERTIES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The area of application of the rarefied neutral methane–nitrogen gas mixture is considered. Experimental data on the transport properties of this mixture and its components were analyzed and generalized on the basis of molecular-kinetic theory relations with the use of the potentials of pair uniform and cross interactions of CH4 and N2 molecules. The parameters of three spherical symmetric three-parameter m-6 Lennard-Jones interaction potentials with a repulsive branch of varying rigidity were determined with the use of the nonlinear weight method of least squares. Tables of reference data on the viscosity of the indicated mixture and the coefficients of interdiffusion of its components were calculated for the concentration range 0–1 at temperatures 100–1150 K. Estimates of the confidential errors in determining the properties of this mixture have been made with the use of the error matrix of parameters of the indicated potentials. The results of calculations were compared with the corresponding reference data obtained earlier for the CH4–N2 gas mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Boushehri, J. Bzowski, J. Kestin, and E. A. Mason, Equilibrium and transport properties of eleven polyatomic gases at low densities, J. Phys. Chem. Ref. Data, 16, No. 3, 445–466 (1987).

    Article  Google Scholar 

  2. J. Bzowski, J. Kestin, E. A. Mason, and F. J. Uribe, Equilibrium and transport properties of gas mixtures at low densities: Eleven polyatomic gases and five noble gases, J. Phys. Chem. Ref. Data, 19, No. 5, 1176–1231 (1990).

    Article  Google Scholar 

  3. A. N. Kalashnikov, A System of Reference Data on Kinetic Coefficients for Calculating the Processes of Transfer in the Gas–Air System of a Boiler Plant, Candidate′s Dissertation (in Engineering), OIVT RAN, Moscow (2001).

    Google Scholar 

  4. L. R. Fokin and A. N. Kalashnikov, Viscosity and self-diffusion coefficient of a rarefied steam. Refinement of reference data, Teplofiz. Vys. Temp., 46, No. 5, 674–679 (2008).

    Google Scholar 

  5. L. R. Fokin and A. N. Kalashnikov, Transport properties of mixtures of rarefied N2–H2 gases in the EPIDIF data base, Teplofiz. Vys. Temp., 47, No. 5, 675–687 (2009).

    Google Scholar 

  6. A. G. Shashkov, A. F. Zolotukhina, L. R. Fokin, and A. N. Kalashnikov, Transport properties of mixtures of rarefied neutral gases. Nitrogen–argon system, J. Eng. Phys. Thermophys., 83, No. 1, 188–208 (2010).

    Article  Google Scholar 

  7. L. R. Fokin, A. N. Kalashnikov, and A. F. Zolotukhina, Transport properties of mixtures of rarefied gases. Nitrogen–methane system, J. Eng. Phys. Thermophys., 84, No. 6, 1408–1420 (2011).

    Article  Google Scholar 

  8. V. N. Popov, L. R. Fokin, and A. N. Kalashnikov, Analytical representation of collision integrals for the m-6 L-J potential, Teplofiz. Vys. Temp., 37, No. 1, 49–55 (1999).

    Google Scholar 

  9. L. Zarkova, U. Hohm, and M. Damyanova, Viscosity and pVT-second virial coefficient of binary noble-globular gas and globular-globular gas mixtures calculated by means of an isotropic temperature-dependent potential, J. Phys. Chem. Ref. Data, 32, No. 4, 1591–1605 (2003).

    Article  Google Scholar 

  10. S. Palle and R. S. Miller, Analysis of high-pressure hydrogen, methane, and heptane laminar diffusion flames: Thermal diffusion factor modeling, Combust. Flame, 151, No. 4, 581–600 (2007).

    Article  Google Scholar 

  11. K. C. Clay, S. P. Speakman, G. A. J. Amaratunga, and S. R. P. Silva, Characterization of a-C:H:N deposition from CH4/N2 rf plasmas using optical emission spectroscopy, J. Appl. Phys., 79, No. 6, 7229–7233 (1996).

    Google Scholar 

  12. A. Luspay-Kuti, V. F. Chevrier, F. C. Wasiak, et al., Experimental simulations of CH4 evaporation on Titan, Geophys. Res. Lett., 39, L23203 (5) (2012).

  13. C. R. Mueller and R. W. Cahil, Mass spectrometric measurement of diffusion coefficient, J. Chem. Phys., 40, No. 3, 651–654 (1964).

    Article  Google Scholar 

  14. I. F. Golubev, Viscosity of Gases and Gas Mixtures [in Russian], Fizmatgiz, Moscow (1959).

    Google Scholar 

  15. N. E. Gnezdilov and I. F. Golubev, Viscosity of the methane–nitrogen and methane–nitrogen–hydrogen mixtures at temperatures from 273 to 473 K and pressures of up to 490.3·105 N/m2, Gazov. Prom., No. 4, 46–48 (1968).

  16. A. E. Humphreys and R. Gray, Thermal diffusion as a probe of binary diffusion coefficient at elevated temperatures. II. CH4–N2 and CH4–CO2, Proc. Roy. Soc. (London) A, 322, No. 1548, 89–100 (1971).

    Article  Google Scholar 

  17. J. Engel and H. Knaap, Experimental determination of binary diffusion coefficients in gaseous systems He–CH4, He–N2, CH4–N2, Wärme- und Stoffübertragung, 6, No. 3, 146–152 (1973).

    Article  Google Scholar 

  18. W. A. Wakeham and D. H. Slater, Diffusion coefficients for n-alkanes in binary gaseous mixtures with nitrogen, J. Phys. B, 6, 886–896 (1973).

    Article  Google Scholar 

  19. A. K. Pal, S. K. Bhattacharyya, and A. K. Barua, Thermal diffusion in polyatomic gas mixtures CH4–N2 and CH4–CO2, J. Phys. B, 7, No. 1, 178–184 (1974).

    Article  Google Scholar 

  20. J. Kestin and S. T. Ro, The viscosity of nine binary and two ternary mixtures of low density, Ber. Bunsen Ges. Phys. Chem., 78, No. 1, 20–23 (1974).

    Google Scholar 

  21. T. El Hawary, Messung der Dichte und Viskosität in Gasphase von Methan, Stickstoffund Methan–Stickstoff–Gemischen, Dissertation, Ruhr-Universität Bochum (2009).

  22. A. F. Bogatyrev, O. D. Makeenkova, and M. A. Nezovitinova, Experimental study of thermal diffusion in multicomponent gaseous mixtures, Int. J. Thermophys., 36, No. 4, 633–647 (2015).

    Article  Google Scholar 

  23. A. G. Shashkov, A. F. Zolotukhina, and V. B. Vasilenko, The Factor of Thermal Diffusion of Gas Mixtures. Determination Methods [in Russian], Belorusskaya Nauka, Minsk (2007).

    Google Scholar 

  24. S. A. Losev (Ed.), Models of the Processes of Molecular Transfer in the Physicochemical Gas Dynamics: Physicochemical Processes in Gas Dynamics [in Russian], Vol. 3, Fizmatlit, Moscow (2012).

    Google Scholar 

  25. E. A. Maison, Transfer in a neutral gas, in: Kinetic Processes in Gases and Plasmas [Russian translation], Atomizdat, Moscow (1972), pp. 52–91.

    Google Scholar 

  26. V. B. Leonas, Short-range intermolecular forces, Usp. Fiz. Nauk, 107, Issue 1, 29–55 (1972).

    Article  Google Scholar 

  27. H. Schindler, R. Vogelsang, V. Staemmler, et al., Ab initio intermolecular potentials of methane, nitrogen and methane + nitrogen and their use in Monte Carlo simulations of fluids and fluid mixtures, Mol. Phys., 88, No. 6, 1413–1429 (1993).

    Article  Google Scholar 

  28. M. Shadman, S. Veganegi, and F. Ziaie, Ab initio interaction potential of methane and nitrogen, Chem. Phys. Lett., 467, 237–242 (2009).

    Article  Google Scholar 

  29. Yu. N. Kalugina, V. N. Cherepanov, M. A. Buldakov, et al., Theoretical investigation of the potential energy surface of the Van der Waals complex CH4–N2, J. Chem. Phys., 131, 134304 (8) (2009).

  30. D. R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 7th edn., CRC Press, Boca Raton (1993), Ch. 6, pp. 205–206.

  31. T. S. Storvik and E. A. Mason, Determination of diffusion coefficient from viscosity measurements: effect of higher Chapman–Enskog approximations, J. Chem. Phys., 45, No. 10, 3752–3754 (1966).

    Article  Google Scholar 

  32. A. Maghari and A. H. Jaili, Calculation of transport coefficients for CH4–N2 and CH4–O2 by the inversion method, J. Phys. Soc. Jpn., 73, No. 5, 1191–1196 (2004).

    Article  Google Scholar 

  33. J. Moghadasi, M. M. Papari, and F. Yousefi , Transport coefficients of natural gases, J. Chem. Eng. Jpn., 40, No. 9, 698–710 (2007).

    Article  Google Scholar 

  34. I. G. Kaplan, Introduction to the Theory of Intermolecular Interactions [in Russian], Ch. V. Par. 3.3, Nauka, Moscow (1982).

  35. R. Hellmann, E. Bich, E. Vogel, and V. Vesovic, Intermolecular potential energy surface and thermophysical properties of the CH4–N2 system, J. Chem. Phys., 141, 224301 (10) (2014).

  36. P. V. Novitskii and I. A. Zograf, Estimation of Errors in Measurement Results [in Russian], Énergoatomizdat, Leningrad (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Fokin.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 1, pp. 240–249, January–February, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fokin, L.R., Kalashnikov, A.N. Transport Properties of a Rarefied Ch4–N2 Gas Mixture. J Eng Phys Thermophy 89, 249–259 (2016). https://doi.org/10.1007/s10891-016-1372-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1372-1

Keywords

Navigation