Skip to main content

Advertisement

Log in

Nanomaterials in Proton Exchange Fuel Cells

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The present paper considers the state of the art of investigations on the use of nanomaterials in the technology of preparing proton exchange fuel cells. This technology has great prospects for use in transport facilities, as well as in stationary and portable electronic devices. The unique properties of nanostructures permit creating new effective catalysts, polymer membranes, and hydrogen storage systems — key elements of the above technology, which upgrades markedly the efficiency of energy conversion in devices created on its basis and decreases their cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. M. Ehteshami and S. H. Chan, The role of hydrogen and fuel cells to store renewable energy in the future energy network –– potentials and challenges, Energy Policy, 73, No. 1, 103–109 (2014).

    Article  Google Scholar 

  2. A.-C. Dupuis, Proton exchange membranes for fuel cells operated at medium temperatures materials and experimental techniques, Prog. Mater. Sci., 56, No. 3, 289–327 (2011).

    Article  Google Scholar 

  3. H. Zhang and P. K. Shen, Recent development of polymer electrolyte membranes for fuel cells, Chem. Rev., 112, No. 5, 2780–2832 (2012).

    Article  Google Scholar 

  4. J. M. Andújar and F. Segura, Fuel cells: History and updating. A walk along two centuries, Renew. Sustain. Energy Rev., 13, No. 9, 2309–2322 (2009).

    Article  Google Scholar 

  5. B. G. Pollet, I. Staffell, and J. L. Shang, Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects, Electrochim. Acta, 84, 235–249 (2012).

    Article  Google Scholar 

  6. C. Dunwoody, Transition to a commercial fuel cell vehicle market in California, Fuel Cells Bull., 2009, No. 11, 12–14 (2009).

    Article  Google Scholar 

  7. Hyundai FCEV out next spring, concept cars shown by Toyota, Daihatsu and Honda, Fuel Cells Bull., 2013, No. 12, 2 (2013).

  8. A. Zubaryeva and C. Thiel, Analyzing potential lead markets for hydrogen fuel cell vehicles in Europe: Expert views and spatial perspective, Int. J. Hydrogen Energy, 38, No. 36, 15878–15886 (2013).

    Article  Google Scholar 

  9. B. Brushan (Ed.), Springer Handbook of Nanotechnology, Springer, Berlin (2010).

    Google Scholar 

  10. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies [in Russian], Nauka–Fizmatlit, Moscow (2007).

    Google Scholar 

  11. A. Rabis, P. Rodriguez, and T. J. Schmidt, Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges, ACS Catal., 2, No. 5, 864–890 (2012).

    Article  Google Scholar 

  12. N. Shang, P. Papakonstantinou, P. Wang, and S. R. P. Silva, Platinum integrated graphene for methanol fuel cells, J. Phys. Chem. C, 114, No. 37, 15837–15841 (2010).

    Article  Google Scholar 

  13. R. A. Varin, T. Czujko, and Z. S. Wronski, Nanomaterials for Solid State Hydrogen Storage, Springer, New York (2009).

    Book  Google Scholar 

  14. W.-D. Lee, D.-H. Lim, H.-J. Chun, and H.-I. Lee, Preparation of Pt nanoparticles on carbon support using modified polyol reduction for low-temperature fuel cells, Int. J. Hydrogen Energy, 37, No. 17, 12629–12638 (2012).

    Article  Google Scholar 

  15. Y. Li, J. Song, and J. Yang, Graphene models and nanoscale characterization technologies for fuel cell vehicle electrodes, Renew. Sustain. Energy Rev., 42, 66–77 (2015).

    Article  Google Scholar 

  16. H. Chen, G. R. Palmese, and Y. A. Elabd, Membranes with oriented polyelectrolyte nanodomains, Chem. Mater., 18, No. 20, 4875–4881 (2006).

    Article  Google Scholar 

  17. P. Jena, Materials for hydrogen storage: Past, present, and future, J. Phys. Chem. Lett., 2, No. 3, 206–211 (2011).

    Article  MathSciNet  Google Scholar 

  18. M.-C. Clochard, T. Berthelot, C. Baudin, et al., Ion track grafting: A way of producing low-cost and highly proton conductive membranes for fuel cell applications, J. Power Sources, 195, No. 1, 223–231 (2010).

    Article  Google Scholar 

  19. K.-D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology, Chem. Rev., 104, No. 10, 4637–4678 (2004).

    Article  Google Scholar 

  20. S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, Review of the proton exchange membranes for fuel cell applications, Int. J. Hydrogen Energy, 35, No. 17, 9349–9384 (2010).

    Article  Google Scholar 

  21. F. Ublekov, H. Penchev, V. Georgiev, I. Radev, and V. Sinigersky, Protonated montmorillonite as a highly effective proton-conductivity enhancer in p-PBI membranes for PEM fuel cells, Mater. Lett., 135, 5–7 (2014).

    Article  Google Scholar 

  22. Z. Siroma, J. Hagiwara, K. Yasuda, M. Inaba, and A. Tasaka, Simultaneous measurement of the effective ionic conductivity and effective electronic conductivity in a porous electrode fi lm impregnated with electrolyte, J. Electroanal. Chem., 648, No. 2, 92–97 (2010).

    Article  Google Scholar 

  23. D. Shou, Y. Tang, L. Ye, J. Fan, and F. Ding, Effective permeability of gas diffusion layer in proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 38, No. 25, 10519–10526 (2013).

    Article  Google Scholar 

  24. T. Schaffer, T. Tschinder, V. Hacker, and J. O. Besenhard, Determination of methanol diffusion and electroosmotic drag coefficients in proton-exchange-membranes for DMFC, J. Power Sources, 153, No. 2, 210–216 (2006).

    Article  Google Scholar 

  25. J. Tan, Y. J. Chao, M. Yang, W.-K. Lee, and J. W. Van Zee, Chemical and mechanical stability of a silicone gasket material exposed to PEM fuel cell environment, Int. J. Hydrogen Energy, 36, No. 2, 1846–1852 (2011).

    Article  Google Scholar 

  26. R. K. Ahluwalia, X. Wang, J. Kwon, A. Rousseau, J. Kalinoski, B. James, and J. Marcinkoski, Performance and cost of automotive fuel cell systems with ultra-low platinum loadings, J. Power Sources, 196, No. 10, 4619–4630(2011).

    Article  Google Scholar 

  27. Y. Zhang and R. Pitchumani, Numerical studies on an air-breathing proton exchange membrane (PEM) fuel cell, Int. J. Heat Mass Transf., 50, Nos. 23–24, 4698–4712 (2007).

    Article  MATH  Google Scholar 

  28. A. Beicha, Modeling and simulation of proton exchange membrane fuel cell systems, J. Power Sources, 205, 335–339 (2012).

    Article  Google Scholar 

  29. J.-J. Hwang, Y.-J. Chen, and J.-K. Kuo, The study on the power management system in a fuel cell hybrid vehicle, Int. J. Hydrogen Energy, 37, No. 5, 4476–4489 (2012).

    Article  Google Scholar 

  30. J.-Y. Park, Y. Seo, S. Kang, D. You, H. Cho, and H. Na, Operational characteristics of the direct methanol fuel cell stack on fuel and energy efficiency with performance and stability, Int. J. Hydrogen Energy, 37, No. 7, 5946–5957 (2012).

    Article  Google Scholar 

  31. T. S. Zhao, C. Xu, R. Chen, and W. W. Wang, Mass transport phenomena in direct methanol fuel cells, Prog. Energy Combust. Sci., 35, No. 3, 275–292 (2009).

    Article  Google Scholar 

  32. R. K. Ahluwalia and X. Wang, Direct hydrogen fuel cell systems for hybrid vehicles, J. Power Sources, 139, Nos. 1–2, 152–164 (2005).

    Article  Google Scholar 

  33. A. Veziroglu and R. Macario, Fuel cell vehicles: State of the art with economic and environmental concerns, Int. J. Hydrogen Energy, 36, No. 1, 25–43 (2011).

    Article  Google Scholar 

  34. R. A. Silva, T. Hashimoto, G. E. Thompson, and C. M. Rangel, Characterization of MEA degradation for an open air cathode PEM fuel cell, Int. J. Hydrogen Energy, 37, No. 8, 7299–7308 (2012).

    Article  Google Scholar 

  35. E. Cetinkaya, I. Dincer, and G. F. Naterer, Life cycle assessment of various hydrogen production methods, Int. J. Hydrogen Energy, 37, No. 3, 2071–2080 (2012).

    Article  Google Scholar 

  36. P. A. Pilavachi, A. I. Chatzipanagi, and A. I. Spyropoulou, Evaluation of hydrogen production methods using the analytic hierarchy process, Int. J. Hydrogen Energy, 34, No. 13, 5294–5303 (2009).

    Article  Google Scholar 

  37. M. P. De Wit and A. P. C. Faaij, Impact of hydrogen onboard storage technologies on the performance of hydrogen fuelled vehicles: A technoeconomic well-to-wheel assessment, Int. J. Hydrogen Energy, 32, No. 18, 4859–4870 (2007).

    Article  Google Scholar 

  38. X.-Z. Yuan, H. Li, S. Zhang, J. Martin, and H. Wang, A review of polymer electrolyte membrane fuel cell durability test protocols, J. Power Sources, 196, No. 22, 9107–9116 (2011).

    Article  Google Scholar 

  39. N. Zamel and X. Li, Effect of contaminants on polymer electrolyte membrane fuel cells, Prog. Energy Combust. Sci., 37, No. 3, 292–329 (2011).

    Article  Google Scholar 

  40. K.-S. Choi, H.-M. Kim, H. C. Yoon, M. E. Forrest, and P. A. Erickson, Effects of ambient temperature and relative humidity on the performance of Nexa fuel cell, Energy Convers. Manag., 49, No. 12, 3505–3511 (2008).

    Article  Google Scholar 

  41. D. Liu and S. Case, Durability study of proton exchange membrane fuel cells under dynamic testing conditions with cyclic current profile, J. Power Sources, 162, No. 1, 521–531 (2006).

    Article  Google Scholar 

  42. Q. Shen, M. Hou, D. Liang, Z. Zhou, X. Li, Z. Shao, and B. Yi, Study on the processes of start-up and shutdown in proton exchange membrane fuel cells, J. Power Sources, 189, No. 2, 1114–1119 (2009).

    Article  Google Scholar 

  43. I. Jang, I. Hwang, and Y. Tak, Attenuated degradation of a PEMFC cathode during fuel starvation by using carbonsupported IrO2, Electrochim. Acta, 90, 148–156 (2013).

    Article  Google Scholar 

  44. R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, et al., Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev., 107, No. 10, 3904–3951 (2007).

    Article  Google Scholar 

  45. F. Markert, S. K. Nielsen, J. L. Paulsen, and V. Andersen, Safety aspects of future infrastructure scenarios with hydrogen refuelling stations, Int. J. Hydrogen Energy, 32, No. 13, 2227–2234 (2007).

    Article  Google Scholar 

  46. N. Z. Muradov and T. N. Veziroglu, From hydrocarbon to hydrogen–carbon to hydrogen economy, Int. J. Hydrogen Energy, 30, No. 3, 225–237 (2005).

    Article  Google Scholar 

  47. V. Ananthachar and J. J. Duffy, Efficiencies of hydrogen storage systems onboard fuel cell vehicles, Solar Energy, 78, No. 5, 687–694 (2005).

    Article  Google Scholar 

  48. C. Li, P. Peng, D. W. Zhou, and L. Wan, Research progress in LiBH4 for hydrogen storage: a review, Int. J. Hydrogen Energy, 36, No. 22, 14512–14526 (2011).

    Article  Google Scholar 

  49. R. Oriňakova and A. Oriňak, Recent applications of carbon nanotubes in hydrogen production and storage, Fuel, 90, No. 11, 3123–3140 (2011).

    Article  Google Scholar 

  50. M. C. Galassi, B. Acosta-Iborra, D. Baraldi, C. Bonato, F. Harskamp, N. Frischauf, and P. Moretto, Onboard compressed hydrogen storage: Fast filling experiments and simulations, Energy Procedia, 29, 192–200 (2012).

    Article  Google Scholar 

  51. R. K. Ahluwalia, T. Q. Hua, and J. K. Peng, On-board and off-board performance of hydrogen storage options for lightduty vehicles, Int. J. Hydrogen Energy, 37, No. 3, 2891-2910 (2012).

    Article  Google Scholar 

  52. M. D. Paster, R. K. Ahluwalia, G. Berry, A. Elgowainy, S. Lasher, K. McKenney, and M. Gardiner, Hydrogen storage technology options for fuel cell vehicles: well-to-wheel costs, energy efficiencies, and greenhouse gas emissions, Int. J. Hydrogen Energy, 36, No. 22, 14534–14551 (2011).

    Article  Google Scholar 

  53. H. Huo, Y. Wu, and M. Wang, Total versus urban: Well-to-wheels assessment of criteria pollutant emissions from various vehicle/fuel systems, Atmos. Environ., 43, No. 10, 1796–1804 (2009).

    Article  Google Scholar 

  54. P. Jaramillo, C. Samaras, H. Wakeley, and K. Meisterling, Greenhouse gas implications of using coal for transportation: Life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways, Energy Policy, 37, No. 7, 2689–2695 (2009).

    Article  Google Scholar 

  55. C.-J. Zhong, J. Luo, B. Fang, B. N. Wanjala, P. N. Njoki, R. Loukrakpam, and J. Yin, Nanostructured catalysts in fuel cells, Nanotechnology, 21, No. 062001 (2010).

  56. D. Mott, J. Luo, P. N. Njoki, Y. Lin, L. Wang, and C.-J. Zhong, Synergistic activity of gold-platinum alloy nanoparticle catalysts, Catal. Today, 122, Nos. 3–4, 378–385 (2007).

    Article  Google Scholar 

  57. S. Yao, L. Feng, X. Zhao, C. Liu, and W. Xing, Pt/C catalysts with narrow size distribution prepared by colloidalprecipitation method for methanol electrooxidation, J. Power Sources, 217, 280–286 (2012).

    Article  Google Scholar 

  58. L. Chen, M. Guo, H.-F. Zhang, and X.-D. Wang, Characterization and electrocatalytic properties of PtRu/C catalysts prepared by impregnation reduction method using Nd2O3 as dispersing reagent, Electrochim. Acta, 52, No. 3, 1191–1198 (2006).

    Article  Google Scholar 

  59. H. Kim and S. H. Moon, Chemical vapor deposition of highly dispersed Pt nanoparticles on multi-walled carbon nanotubes for use as fuel cell electrodes, Carbon, 49, No. 4, 1491–1501 (2011).

    Article  MathSciNet  Google Scholar 

  60. B. A. Cheney, J. A. Lauterbach, and J. G. Chen, Reverse micelle synthesis and characterization of supported Pt/Ni bimetallic catalysts on gamma-Al2O3, Appl. Catal. Gen., 394, Nos. 1–2, 41–47 (2011).

    Article  Google Scholar 

  61. C. Paoletti, A. Cemmi, L. Giorgi, R. Giorgi, L. Pilloni, E. Serra, and M. Pasquali, Electrodeposition on carbon black and carbon nanotubes of Pt nanostructured catalysts for methanol oxidation, J. Power Sources, 183, No. 1, 84–91(2008).

    Article  Google Scholar 

  62. Y. Ra, J. Lee, I. Kim, S. Bong, and H. Kim, Preparation of Pt–Ru catalysts on Nafion(Na+)-bonded carbon layer using galvanostatic pulse electrodeposition for proton-exchange membrane fuel cell, J. Power Sources, 187, No. 2, 363–370 (2009).

    Article  Google Scholar 

  63. S. Karimi and F. R. Foulkes, Pulse electrodeposition of platinum catalyst using different pulse current waveforms, Electrochem. Comm., 19, 17–20 (2012).

    Article  Google Scholar 

  64. S. Woo, I. Kim, J. K. Lee, S. Bong, J. Lee, and H. Kim, Preparation of cost-effective Pt–Co electrodes by pulse electrodeposition for PEMFC electrocatalysts, Electrochim. Acta, 56, No. 8, 3036–3041 (2011).

    Article  Google Scholar 

  65. C.-T. Hsieh, J.-M. Wei, J.-S. Lin, and W.-Y. Chen, Pulse electrodeposition of Pt nanocatalysts on graphene-based electrodes for proton exchange membrane fuel cells, Catal. Comm., 16, No. 1, 220–224 (2011).

    Article  Google Scholar 

  66. Y. Zhao, L. Fan, J. Ren, and B. Hong, Electrodeposition of Pt–Ru and Pt–Ru–Ni nanoclusters on multiwalled carbon nanotubes for direct methanol fuel cell, Int. J. Hydrogen Energy, 39, No. 9, 4544–4557 (2014).

    Article  Google Scholar 

  67. F. Yang, K. Cheng, X. Xiao, J. Yin, G. Wang, and D. Cao, Nickel and cobalt electrodeposited on carbon fiber cloth as the anode of direct hydrogen peroxide fuel cell, J. Power Sources, 245, No. 1, 89–94 (2014).

    Article  Google Scholar 

  68. D. Gruber, N. Ponath, J. Muller, and F. Lindstaedt, Sputter-deposited ultra-low catalyst loading for PEM fuel cells, J. Power Sources, 150, 67–72 (2005).

    Article  Google Scholar 

  69. M. Alvisi, G. Galtieri, L. Giorgi, R. Giorgi, E. Serra, and M. A. Signore, Sputter deposition of Pt nanoclusters and thin films on PEM fuel cell electrodes, Surf. Coat. Technol., 200, Nos. 5–6, 1325–1329 (2005).

    Article  Google Scholar 

  70. M. Laurent-Brocq, N. Job, D. Eskenazi, and J.-J. Pireaux, Pt/C catalyst for PEM fuel cells: Control of Pt nanoparticles characteristics through a novel plasma deposition method, Appl. Catal., B147, 453–463 (2014).

    Article  Google Scholar 

  71. G. Dorcioman, D. Ebrasu, I. Enculescu, N. Serban, E. Axente, F. Sima, C. Ristoscu, and I. N. Mihailescu, Metal oxide nanoparticles synthesized by pulsed laser ablation for proton exchange membrane fuel cells, J. Power Sources, 195, No. 23, 7776–7780 (2010).

    Article  Google Scholar 

  72. J. Chen, D. Li, H. Koshikawa, M. Asano, and Y. Makaewa, Crosslinking and grafting of polyetheretherketone film by radiation techniques for application in fuel cells, J. Membr. Sci., 362, Nos. 1–2, 488–494 (2010).

    Article  Google Scholar 

  73. G. Ya. Gerasimov, Radiation methods in the nanotechnology, J. Eng. Phys. Thermophys., 84, No. 4, 947–963(2011).

    Article  Google Scholar 

  74. D. S. Yang, K. S. Sim, H. D. Kwen, and S. H. Choi, One-step preparation of Pt–M and FP–MWNT catalysts (M = Ru, Ni, Co, Sn, and Au) by γ-ray irradiation and their catalytic efficiency for CO and MeOH, J. Ind. Eng. Chem., 18, No. 1, 538–545 (2012).

    Article  Google Scholar 

  75. G. A. Tritsaris, J. K. Norskov, and J. Rossmeisl, Trends in oxygen reduction and methanol activation on transition metal chalcogenides, Electrochim Acta, 56, No. 27, 9783–9788 (2011).

    Article  Google Scholar 

  76. A. L. Stottlemyer, T. G. Kelly, Q. Meng, and J. G. Chen, Reactions of oxygen-containing molecules on transition metal carbides: surface science insight into potential applications in catalysis and electrocatalysis, Surf. Sci. Rep., 67, Nos. 9–10, 201–232 (2012).

    Article  Google Scholar 

  77. V. Di Noto, E. Negro, S. Polizzi, P. Riello, and P. Atanassov, Preparation, characterization and single-cell performance of a new class of Pd-carbon nitride electrocatalysts for oxygen reduction reaction in PEMFCs, Appl. Catal., B 111–112, 185–199 (2012).

    Article  Google Scholar 

  78. J. H. Zagal, S. Griveau, J. F. Silva, T. Nyokong, and F. Bedioui, Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions, Coord. Chem. Rev., 254, Nos. 23–24, 2755–2791 (2010).

    Article  Google Scholar 

  79. R. Othman, A. L. Dicks, and Z. Zhu, Non precious metal catalysts for the PEM fuel cell cathode, Int. J. Hydrogen Energy, 37, No. 1, 357–372 (2012).

    Article  Google Scholar 

  80. L. Qu, Y. Liu, J.-B. Baek, and L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano, 4, No. 3, 1321–1326 (2010).

    Article  Google Scholar 

  81. Z. Yang, H. Nie, X. Chen, X. Chen, and S. Huang, Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction, J. Power Sources, 236, 238–249 (2013).

    Article  Google Scholar 

  82. S. Wang, D. Yu, and L. Dai, Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction, J. Am. Chem. Soc., 133, No. 14, 5182–5185 (2011).

    Article  Google Scholar 

  83. N. Jung, D. Y. Chung, J. Ryu, S. J. Yoo, and Y.-E. Sung, Pt-based nanoarchitecture and catalyst design for fuel cell applications, Nano Today, 9, No. 4, 433–456 (2014).

    Article  Google Scholar 

  84. L. Li and Y. Xing, Pt–Ru nanoparticles supported on carbon nanotubes as methanol fuel cell catalysts, J. Phys. Chem., C111, No. 6, 2803–2808 (2007).

    Google Scholar 

  85. S. M. Andersen, M. Borghei, P. Lund, Y.-R. Elina, A. Pasanen, E. Kauppinen, V. Ruiz, P. Kauranen, and E. M. Skou, Durability of carbon nanofiber (CNF) and carbon nanotube (CNT) as catalyst support for proton exchange membrane fuel cells, Solid State Ion, 231, 94–101 (2013).

    Article  Google Scholar 

  86. N. Karousis, N. Tagmatarchis, and D. Tasis, Current progress on the chemical modification of carbon nanotubes, Chem. Rev., 110, No. 9, 5366–5397 (2010).

    Article  Google Scholar 

  87. Y.-C. Chiang, M.-K. Hsieh, and H.-H. Hsu, The effect of carbon supports on the performance of platinum/carbon nanotubes for proton exchange membrane fuel cells, Thin Solid Films, 570, Pt. B, 221–229 (2014).

  88. K. Shimizu, J. S. Wang, and C. M. Wai, Application of green chemistry techniques to prepare electrocatalysts for direct methanol fuel cells, J. Phys. Chem., A114, No. 11, 3956–3961 (2010).

    Article  Google Scholar 

  89. J. Qian, W. Wei, H. Huang, Y. Tao, K. Chen, and X. Tang, A study of different polyphosphazene-coated carbon nanotubes as a Pt–Co catalyst support for methanol oxidation fuel cell, J. Power Sources, 210, 345–349 (2012).

    Article  Google Scholar 

  90. Z. Liu, Q. Shi, R. Zhang, Q. Wang, G. Kang, and F. Peng, Phosphorus-doped carbon nanotubes supported low Pt loading catalyst for the oxygen reduction reaction in acidic fuel cells, J. Power Sources, 268, 171–175 (2014).

    Article  Google Scholar 

  91. S. Jing, L. Luo, S. Yin, F. Huang, Y. Jia, Y. Wei, Z. Sun, and Y. Zhao, Tungsten nitride decorated carbon nanotubes hybrid as efficient catalyst supports for oxygen reduction reaction, Appl. Catal., B147, 897–903 (2014).

    Article  Google Scholar 

  92. W.-L. Qu, D.-M. Gu, Z.-B. Wang, and J.-J. Zhang, High stability and high activity Pd/ITO-CNTs electrocatalyst for direct formic acid fuel cell, Electrochim. Acta, 137, 676–684 (2014).

    Article  Google Scholar 

  93. J. Zhang, S. Tang, L. Liao, W. Yu, J. Li, F. Seland, and G. M. Haarberg, Improved catalytic activity of mixed platinum catalysts supported on various carbon nanomaterials, J. Power Sources, 267, 706–713 (2014).

    Article  Google Scholar 

  94. E. Antolini, Graphene as a new carbon support for low-temperature fuel cell catalysts, Appl. Catal., B 123–124, 52–68 (2012).

    Article  Google Scholar 

  95. Y. Hu, P. Wu, Y. Yin, H. Zhang, and C. Cai, Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt–Ni-graphene nanocatalysts for the methanol oxidation, Appl. Catal., B 111–112, 208–217 (2012).

    Article  Google Scholar 

  96. L. Zeng, T. S. Zhao, L. An, G. Zhao, X. H. Yan, and C. Y. Jung, Graphene-supported platinum catalyst prepared with ionomer as surfactant for anion exchange membrane fuel cells, J. Power Sources, 275, 506–515 (2015).

    Article  Google Scholar 

  97. D. He, Y. Jiang, H. Lv, M. Pan, and S. Mu, Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability, Appl. Catal., B 132–133, 379–388 (2013).

    Article  Google Scholar 

  98. R. K. Ahluwalia, X. Wang, J. Kwon, A. Rousseau, J. Kalinoski, B. James, and J. Marcinkoski, Performance and cost of automotive fuel cell systems with ultra-low platinum loadings, J. Power Sources, 196, No. 10, 4619–4630 (2011).

    Article  Google Scholar 

  99. V. Lee, V. Berejnov, M. West, S. Kundu, D. Susac, J. Stumper, R. T. Atanasoski, M. Debe, and A. P. Hitchcock, Scanning transmission X-ray microscopy of nanostructured thin fi lm catalysts for proton-exchange-membrane fuel cells, J. Power Sources, 263, 163–174 (2014).

    Article  Google Scholar 

  100. M. K. Debe and R. J. Poirier, Postdeposition growth of a uniquely nanostructured organic fi lm by vacuum annealing, J. Vac. Sci. Technol., A12, No. 4, 2017–2022 (1994).

    Article  Google Scholar 

  101. L. Gancs, T. Kobayashi, M. K. Debe, R. Atanasoski, and A. Wieckowski, Crystallographic characteristics of nanostructured thin film fuel cell electrocatalysts –– a HRTEM study, Chem. Mater., 20, No. 7, 2444–2454 (2008).

    Article  Google Scholar 

  102. K. A. Mauritz and R. B. Moore, State of understanding of Nafion, Chem. Rev., 104, No. 10, 4535–4586 (2004).

    Article  Google Scholar 

  103. H. S. Thiam, W. R. W. Daud, S. K. Kamarudin, A. B. Mohammad, A. A. H. Kadhum, K. S. Loh, and E. H. Majlan, Overview on nanostructured membrane in fuel cell applications, Int. J. Hydrogen Energy, 36, No. 4, 3187–3205 (2011).

    Article  Google Scholar 

  104. S. Licoccia and E. Traversa, Increasing the operation temperature of polymer electrolyte membranes for fuel cells: from nanocomposites to hybrids, J. Power Sources, 159, No. 1, 12–20 (2006).

    Article  Google Scholar 

  105. J.-H. Seol, J.-H. Won, K.-S. Yoon, Y. T. Hong, and S.-Y. Lee, SiO2 ceramic nanoporous substrate-reinforced sulfonated poly(arylene ether sulfone) composite membranes for proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 37, No. 7, 6189–6198 (2012).

    Article  Google Scholar 

  106. H. Zarrin, D. Higgins, Y. Jun, Z. Chen, and M. Fowler, Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells, J. Phys. Chem., C 115, No. 42, 20774–20781 (2011).

    Google Scholar 

  107. B. P. Tripathi, M. Schieda, V. K. Shahi, and S. P. Nunes, Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes, J. Power Sources, 196, No. 3, 911–919 (2011).

    Article  Google Scholar 

  108. H. Hanot and E. Ferain, Industrial applications of ion track technology, Nucl. Instrum. Meth. Phys. Res., B267, No. 6, 1019–1022 (2009).

    Article  Google Scholar 

  109. A. Waheed, D. Forsyth, A. Watts, A. F. Saad, G. R. Mitchell, M. Farmer, and P. J. F. Harris, The track nanotechnology, Radiat. Meas., 44, Nos. 9–10, 1109–1113 (2009).

    Article  Google Scholar 

  110. A. G. Chmielewski, D. K. Chmielewska, J. Michalik, and M. H. Sampa, Prospects and challenges in application of gamma, electron and ion beams in processing of nanomaterials, Nucl. Instrum. Methods Phys. Res., B265, No. 1, 339–346 (2007).

    Article  Google Scholar 

  111. S. K. Chakarvarti, Track-etch membranes enabled nanomicrotechnology: a review, Radiat. Meas., 44, Nos. 9–10, 1085–1092 (2009).

    Article  Google Scholar 

  112. M. Yoshida, Y. Kimura, J. Chen, M. Asano, and Y. Maekawa, Preparation of PTFE-based fuel cell membranes by mbining latent track formation technology with graft polymerization, Radiat. Phys. Chem., 78, No. 12, 1060–1066 (2009).

    Article  Google Scholar 

  113. S. McWhorter, C. Read, G. Ordaz, and N. Stetson, Materials-based hydrogen storage: attributes for near-term, early market PEM fuel cells, Curr. Opin. Solid State Mater. Sci., 15, No. 2, 29–38 (2011).

    Article  Google Scholar 

  114. S. S. Mao, S. Shen, and L. Guo, Nanomaterials for renewable hydrogen production, storage and utilization, Prog. Nat. Sci. Mater. Int., 22, No. 6, 522–534 (2012).

    Article  Google Scholar 

  115. J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao, and J. Yang, Development of high pressure gaseous hydrogen storage technologies, Int. J. Hydrogen Energy, 37, No. 1, 1048–1057 (2012).

    Article  Google Scholar 

  116. S. H. Ho and M. M. Rahman, Forced convective mixing in a zero boil-off cryogenic storage tank, Int. J. Hydrogen Energy, 37, No. 13, 10196–10209 (2012).

    Article  Google Scholar 

  117. M. Conte, P. P. Prosini, and S. Passerini, Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials, Mater. Sci. Eng., B108, Nos. 1–2, 2–8 (2004).

    Article  Google Scholar 

  118. D. Pukazhselvan, V. Kumar, and S. K. Singh, High capacity hydrogen storage: Basic aspects, new developments and milestones, Nano Energy, 1, No. 4, 566–589 (2012).

    Article  Google Scholar 

  119. B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, Metal hydride materials for solid hydrogen storage: a review, Int. J. Hydrogen Energy, 32, No. 9, 1121–1140 (2007).

    Article  Google Scholar 

  120. H. Shao, W. Ma, M. Kohno, Y. Takata, G. Xin, S. Fujikawa, S. Fujino, S. Bishop, and X. Li, Hydrogen storage and thermal conductivity properties of Mg-based materials with different structures, Int. J. Hydrogen Energy, 39, No. 18, 9893–9898 (2014).

    Article  Google Scholar 

  121. S. Barcelo, M. Rogers, C. P. Grigoropoulos, and S. S. Mao, Hydrogen storage property of sandwiched magnesium hydride nanoparticle thin fi lm, Int. J. Hydrogen Energy, 35, No. 13, 7232–7235 (2010).

    Article  Google Scholar 

  122. H. Shao, M. Felderhoff, and F. Schuth, Hydrogen storage properties of nanostructured MgH2/TiH2 composite prepared by ball milling under high hydrogen pressure, Int. J. Hydrogen Energy, 36, No. 17, 10828–10833 (2011).

    Article  Google Scholar 

  123. C. Li, P. Peng, D. W. Zhou, and L. Wan, Research progress in LiBH4 for hydrogen storage: a review, Int. J. Hydrogen Energy, 36, No. 22, 14512–14526 (2011).

    Article  Google Scholar 

  124. M. Armandi, B. Bonelli, K. Cho, R. Ryoo, and E. Garrone, Study of hydrogen physisorption on nanoporous carbon materials of different origin, Int. J. Hydrogen Energy, 36, No. 13, 7937–7943 (2011).

    Article  Google Scholar 

  125. Y. Yürüm, A. Taralp, and T. N. Veziroglu, Storage of hydrogen in nanostructured carbon materials, Int. J. Hydrogen Energy, 34, No. 9, 3784–3798 (2009).

    Article  Google Scholar 

  126. M. Hirscher, B. Panella, and B. Schmitz, Metal-organic frameworks for hydrogen storage, Micropor. Mesopor. Mater., 129, No. 3, 335–339 (2010).

    Article  Google Scholar 

  127. A. Azzouz, Achievement in hydrogen storage on adsorbents with high surface-to-bulk ratio –– Prospects for Si-containing matrices, Int. J. Hydrogen Energy, 37, No. 6, 5032–5049 (2012).

    Article  Google Scholar 

  128. C. Tian, Z. Wang, M. Jin, W. Zhao, and Y. Meng, Transformation mechanism of a H2 molecule from physisorption to chemisorption in pristine and B-doped C20 fullerenes, Chem. Phys. Lett., 511, Nos. 4–6, 393–398 (2011).

    Article  Google Scholar 

  129. H. Lee, M. C. Nguyen, and J. Ihm, Titanium-functional group complexes for high-capacity hydrogen storage materials, Solid State Comm., 146, Nos. 9–10, 431–434 (2008).

    Article  Google Scholar 

  130. Y. Gao, N. Zhao, J. Li, E. Liu, C. He, and C. Shi, Hydrogen spillover storage on Ca-decorated graphene, Int. J. Hydrogen Energy, 37, No. 16, 11835–11841 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ya. Gerasimov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 88, No. 6, pp. 1498–1511, November–December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimov, G.Y. Nanomaterials in Proton Exchange Fuel Cells. J Eng Phys Thermophy 88, 1554–1568 (2015). https://doi.org/10.1007/s10891-015-1343-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-015-1343-y

Keywords

Navigation