Skip to main content
Log in

Radiation methods in nanotechnology

  • Reviews
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

This paper considers the state of the art in the application of radiation technology for obtaining and investigating new functional materials, devices, and systems of nanometer sizes where the key role is played by the quantum properties of the substance. This concerns in the first place the production of ion-track membranes, polymeric nanocomposites and nanogels, three-dimensional nanostructures, finely dispersed powders, semiconductor nanometric structures, carbon nanostructures, microchips of the new generation based on graphene transistors, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. P. Suzdalev, Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials [in Russian], KomKniga, Moscow (2006).

    Google Scholar 

  2. B. Brushan (Ed.), Springer Handbook of Nanotechnology, Springer, Berlin (2010).

    Google Scholar 

  3. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies [in Russian], Nauka–Fizmatlit, Moscow (2007).

  4. A. T. Larimar (Ed.), Progress in Nanotechnology Research, Nova Science Publishers, New York (2008).

    Google Scholar 

  5. M. Dragoman and D. Dragoman, Graphene-based quantum electronics, Prog. Quant. Electron., 33, No. 6, 165–214 (2009).

    Article  Google Scholar 

  6. M. Spotheim-Maurizot, T. Douki, M. Mostafavi, and J. Belloni (Eds.), Radiation Chemistry: from Basics to Applications in Material and Life Science, L’Actualite Chimique Livres, Paris (2008).

    Google Scholar 

  7. A. G. Chmielewski (Ed.), Emerging Applications of Radiation in Nanotechnology, IAEA TECDOC–1438, IAEA, Vienna (2005).

    Google Scholar 

  8. A. G. Chmielewski, D. K. Chmielewska, J. Michalik, and M. H. Sampa, Prospects and challenges in application of gamma, electron and ion beams in processing of nanomaterials, Nucl. Instr. Meth., B265, No. 1, 339–346 (2007).

    Google Scholar 

  9. K. E. Sickafus, E. A. Kotomin, and B. P. Uberuaga (Eds.), Radiation Effects in Solids, Springer, Dordrecht (2007).

    Google Scholar 

  10. V. F. Reutov and S. N. Dmitriev, Ion-track nanotechnology, Ross. Khim. Zh., 46, No. 5, 74–80 (2002).

    Google Scholar 

  11. T. J. Pinnavaia and G. W. Beall (Eds.), Polymer-Clay Nanocomposites, John Wiley & Sons, Ltd., New York (2000).

    Google Scholar 

  12. S. Matsui, Three-dimensional nanostructure fabrication by focused ion beam chemical vapor deposition, in: B. Bhushan (Ed.), Springer Handbook of Nanotechnology, Springer, Berlin (2007), pp. 179–195.

    Chapter  Google Scholar 

  13. M. I. Baraton, Synthesis, Functionalization, and Surface Treatment of Nanoparticles, Am. Sci. Publ., Los-Angeles (2002).

    Google Scholar 

  14. G. Ya. Gerasimov, Formation and conversion of carbon nanostructures under radiation, Inzh.-Fiz. Zh., 83, No. 4, 796–808 (2010).

    Google Scholar 

  15. A. S. Barnard and I. K. Snook, Transformation of graphene into graphane in the absence of hydrogen, Carbon, 48, No. 4, 981–986 (2010).

    Article  Google Scholar 

  16. A. Waheed, D. Forsyth, A. Watt, et al., The track nanotechnology, Radiat. Measur., 44, Nos. 9–10, 1109–1113 (2009).

    Article  Google Scholar 

  17. Y. Maekava, Y. Suzuki, M. Yoshida, K. Maeyama, and N. Yonezawa, Ion beam-induced positive imaging of polyimide via two step imidization, Polymer, 44, No. 8, 2307–2312 (2003).

    Article  Google Scholar 

  18. F. Bergamini, M. Bianconi, S. Cristiani, et al., Ion track formation in low temperature silicon dioxide, Nucl. Instr. Meth., B266, No. 10, 2475–2478 (2008).

    Google Scholar 

  19. D. K. Avasthi, Y. K. Mishra, F. Singh, and J. P. Stoquert, Ion tracks in silica for engineering the embedded nanoparticles, Nucl. Instrum. Meth., B268, No. 19, 3027–3034 (2010).

    Google Scholar 

  20. S. K. Chakarvarti, Track-etch membranes enabled nano-/microtechnology: A review, Radiat. Measur., 44, Nos. 9–10, 1085–1092 (2009).

    Article  Google Scholar 

  21. P. Apel, Track etching technique in membrane technology, Radiat. Measur., 34, Nos. 1–6, 559–566 (2001).

    Article  Google Scholar 

  22. D. Fink, L. T. Chadderton, K. Hoppe, W. R. Fahrner, A. Chandra, and A. Kiv, Swift-heavy ion track electronics (SITE), Nucl. Instrum. Meth., B261, Nos. 1–2, 727–730 (2007).

    Google Scholar 

  23. H. Hanot and E. Ferain, Industrial applications of ion track technology, Nucl. Instrum. Meth., B267, No. 6, 1019–1022 (2009).

    Google Scholar 

  24. M.-C. Clochard, T. Berthelot, C. Baudin, et al., Ion track grafting: A way of producing low-cost and highly proton conductive membranes for fuel cell applications, J. Power Sources, 195, No. 1, 223–231 (2010).

    Article  Google Scholar 

  25. M. E. Toimil-Molares, V. Buschmann, D. Dobrev, et al., Single-crystalline cooper nanowires produced by electrochemicaldeposition in polymeric ion track membranes, Adv. Mater., 13, No. 1, 62–65 (2001).

    Article  Google Scholar 

  26. L. Dauginet-De Pra, E. Ferain, R. Legras, et al., Fabrication of a new generation of track-etched templates and their use for the synthesis of metallic and organic nanostructures, Nucl. Instrum. Meth., B196, Nos. 1–2, 81–88 (2002).

    Google Scholar 

  27. R. Spohr, C. Zet, B. E. Fisher, et al., Controlled fabrication of ion track nanowires and channels, Nucl. Instrum. Meth., B268, No. 6, 676–686 (2010).

    Google Scholar 

  28. Y. Maekava, H. Koshikawa, and M. Yoshida, Anisotropically conducting films consisting of sub-micron copper wires in the ion track membranes of poly(ethylene terephthalate), Polymer, 45, No. 7, 2291–2295 (2004).

    Article  Google Scholar 

  29. K. Hoppe, W. R. Fahrner, D. Fink, et al., An ion track based approach to nano- and micro-electronics, Nucl. Instrum. Meth., B266, No. 8, 1642–1646 (2008).

    Google Scholar 

  30. A. Schultz, G. N. Akapiev, V. V. Shirkova, H. Rösler, and S. N. Dmitriev, A new method of fabrication of heat transfer surfaces with micro-structured profile, Nucl. Instrum. Meth., B236, Nos. 1–4, 254–258 (2005).

    Google Scholar 

  31. E. T. Thostenson, C. Li, and T.-W. Chou, Nanocomposites in context, Compos. Sci. Technol., 65, Nos. 3–4, 491–516 (2005).

    Article  Google Scholar 

  32. A. K. Mikitaev, O. B. Lednev, and A. Yu. Bedanokov, Polymeric silicate nanocomposites based on organomodified clays, in: A. T. Larimar (Ed.), Progress in Nanotechnology Research, Nova Science Publishers, New York (2008), pp. 45–59.

    Google Scholar 

  33. R. J. Hemply, G. W. Crabtree, and M. V. Buchanan, Materials in extreme environments, Phys. Today, 62, No. 11, pp. 32–37 (2009).

    Article  Google Scholar 

  34. R. A. Andrievskii, Thermal stability of nanomaterials, Usp. Khim., 71, No. 10, 967–981 (2002).

    Google Scholar 

  35. E. Najafi and K. Shin, Radiation resistant polymer–carbon nanotube nanocomposite thin films, Colloid. Surf., 257258, 333–337 (2005).

    Google Scholar 

  36. B. A. Rozenberg and R. Tenne, Polymer-assisted fabrication of nanoparticles and nanocomposites, Prog. Polym. Sci., 33, No. 12, 40–112 (2008).

    Article  Google Scholar 

  37. S. Pavlidou and C. D. Papaspyrides, A review on polymer-layered silicate nanocomposites, Prog. Polym. Sci., 33, No. 1, 1119–1198 (2008).

    Article  Google Scholar 

  38. Y. Hu, O. A. Shenderova, Z. Hu, C. W. Padgett, and D. W. Brenner, Carbon nanostructures for advanced composites, Rep. Prog. Phys., 69, No. 6, 1847–1895 (2006).

    Article  Google Scholar 

  39. A. B. Zezin, V. B. Rogacheva, V. I. Feldman, P. Afanasiev, and A. A. Zezin, From triple interpolyelectrolytemetal complexes to polymer–metal nanocomposites, Adv. Colloid Interface Sci., 158, Nos. 1–2, 84–93 (2010).

    Article  Google Scholar 

  40. Y. Komory and K. Kuroda, Layered silicate-polymer intercalation compounds, in: T. J. Pinnavaia and G. W. Beall (Eds.), Polymer-Clay Nanocomposites, John Wiley & Sons, Ltd., New York (2000), pp. 3–18.

    Google Scholar 

  41. L. Meszaros and T. Czvikovszky, Polyamide-6 nanocomposites with electron-beam–treated clay, Radiat. Phys. Chem., 76, Nos. 8–9, 1329–1332 (2007).

    Article  Google Scholar 

  42. V. Thakur, A. Leuteritz, U. Gohs, et al., Montmorillonite nanocomposites with electron-beam modified atactic polypropylene, Appl. Clay Sci., 49, No. 3, 200–204 (2010).

    Article  Google Scholar 

  43. H.-J. Glôsel, F. Bauer, E. Hartmann, et al., Radiation-cured polymeric nanocomposites of enhanced surface-mechanical properties, Nucl. Instrum. Meth., B208, Nos. 1–4, 303–308 (2003).

    Google Scholar 

  44. J. Sharif, K. Z. M. Dahlan, and W. M. Z. W. Yunus, Electron beam crosslinking of poly(ethylene-co-vinyl acetate)/clay nanocomposites, Radiat. Phys. Chem. 76, Nos. 11–12, 1698–1702 (2007).

    Article  Google Scholar 

  45. A. N. Krkljes_ , M. T. Marinovic-Cincovic, Z. M. Kacarevic-Popovic, and J. M. Nedeljkovic, Radiolytic synthesis and characterization of Ag-PVA nanocomposites, Eur. Polym. J., 43, No. 6, 2171–2176 (2007).

    Article  Google Scholar 

  46. E. Planes, L. Chazeau, G. Vigier, and T. Stuhldreier, Influence of silica fillers on the ageing by gamma radiation of EDPM nanocomposites, Compos. Sci. Technol., 70, No. 10, 1530–1536 (2010).

    Article  Google Scholar 

  47. A. G. Chmielewski, M. Haji-Saeid, and S. Ahmed, Progress in radiation processing of polymers, Nucl. Instrum. Meth., B236, Nos. 1–4, 44–54 (2005).

    Google Scholar 

  48. E. J. Robinette and G. R. Palmese, Synthesis of polymer-polymer nanocomposites using radiation grafting techniques, Nucl. Instrum. Meth., B236, Nos. 1–4, 216–222 (2005).

    Google Scholar 

  49. Z. Wang, M. Z. M. Yusop, T. Hihara, et al., Formation and growth mechanisms of ion-induced iron-carbon nanocomposites at room temperature, Appl. Surf. Sci., 256, No. 21, 6371–6374 (2010).

    Article  Google Scholar 

  50. X. Lin, R. Zhou, J. Zhang, and S. Fei, A novel one-step electron beam irradiation method for synthesis of Ag/Cu2O nanocomposites, Appl. Surf. Sci., 256, No. 3, 889–893 (2009).

    Article  Google Scholar 

  51. J. Gierak, D. Mailly, G. Faini, et al., Nano-fabrication with focused ion beams, Microelectron. Eng., 5758, 865–875 (2001).

    Article  Google Scholar 

  52. J. Igaki, R. Kometani, K. Nakamatsu, et al., Three-dimensional rotor fabrication by focused-ion-beam chemicalvapor–deposition, Microelectron. Eng., 83, Nos. 4–9, 1221–1224 (2006).

    Article  Google Scholar 

  53. J. Igaki, K. Kanda, Y. Haruyama, et al., Comparison of FIB–CVD and EB–CVD growth characteristics, Microelectron. Eng., 83, Nos. 4–9, 1225–1228 (2006).

    Article  Google Scholar 

  54. S. Matsui, T. Kaito, J. Fujita, et al., Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol., B18, No. 6, 3181–3184 (2000).

    Google Scholar 

  55. S. Matsui, Focused-ion-beam deposition for 3-D nanostructures fabrication, Nucl. Instrum. Meth., B257, Nos. 1– 2, 758–764 (2007).

    Google Scholar 

  56. R. Kometani, T. Hoshino, S. Warisawa, and S. Ishihara, Growth characteristics evaluation on the 3D nanostructure fabrication by the high accuracy control of focused-ion-beam, Microelectron. Eng., 86, Nos. 4–6, 552–555 (2009).

    Article  Google Scholar 

  57. J. Chang, B.-K. Min, J. Kim, and L. Lin, Bimorph nano actuators synthesized by focused ion beam chemical vapor deposition, Microelectron. Eng., 86, No. 11, 2364–2368 (2009).

    Article  Google Scholar 

  58. R. Kometani, S. Warisawa, and S. Ishihara, 3D nanostructure growth evaluations by the real-time current monitoring on focused-ion-beam chemical vapor deposition, Microelectron. Eng., 87, Nos. 5–8, 1044–1048 (2010).

    Article  Google Scholar 

  59. T. Kometani, K. Hoshino, K. Kondo, et al., Performance of nanomanipulation fabricated on glass capillary by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol., B23, No. 1, 298–301 (2005).

    Google Scholar 

  60. T. Kometani, K. Morita, K. Watanabe, et al., Nozzle-nanostructure fabrication on glass capillary by focused-ionbeam chemical vapor deposition and etching, Jpn. J. Appl. Phys., 42, No. 6B, 4107–4110 (2003).

    Article  Google Scholar 

  61. B. G. Ershov, Nanoparticles of metals in water solutions: electronic, optical, and catalytic properties, Ross. Khim. Zh., 45, No. 3, 20–30 (2001).

    Google Scholar 

  62. S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, and G. Yu. Yurkov, Magnetic nanoparticles: methods of production, structure and properties, Usp. Khim., 74, No. 6, 539–574 (2005).

    Google Scholar 

  63. T. Hyeon, Chemical synthesis of magnetic nanoparticles, Chem. Commun., 10, No. 8, 927–934 (2003).

    Article  Google Scholar 

  64. L. Castaldi, K. Giannakopoulos, A. Travlos, et al., CoPt nanoparticles deposited by electron beam evaporation, J. Magn. Magn. Mater., 290291, Pt. 1, 544–546 (2005).

    Article  Google Scholar 

  65. Y. Li, Y. N. Kim, E. J. Lee, W. P. Cai, and S. O. Cho, Synthesis of silver nanoparticles by electron beam irradiation of silver acetate, Nucl. Instrum. Meth., B251, No. 2, 425–428 (2006).

    Google Scholar 

  66. J. H. Sohn, L. Q. Pham, H. S. Kang, et al., Preparation of conducting silver paste with Ag nanoparticles prepared by e-beam irradiation, Radiat. Phys. Chem., 79, No. 11, 1149–1153 (2010).

    Article  Google Scholar 

  67. T.-F. Hsieh, C.-C. Chuang, Y.-C. Chou, and C.-M. Shu, Fabrication of nanoparticles on vertically aligned multi-wall carbon nanotubes by e-beam evaporation, Mater. Des., 31, No. 4, 1684–1687 (2010).

    Article  Google Scholar 

  68. S. P. Bardakhanov, A. I. Korchagin, N. K. Kuksanov, et al., Nanopowder production based on technology of solid raw substances evaporation by electron beam accelerator, Mater. Sci. Eng., B132, Nos. 1–2, 204–208 (2006).

    Article  Google Scholar 

  69. M. Kumar, L. Varshney, and S. Francis, Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix, Radiat. Phys. Chem., 73, No. 1, 21–27 (2005).

    Article  Google Scholar 

  70. F. Zhou, R. Zhou, X. Hao, et al., Influences of surfactant (PVA) concentration and pH on the preparation of cooper nanoparticles by electron beam irradiation, Radiat. Phys. Chem., 77, No. 2, 169–173 (2008).

    Article  Google Scholar 

  71. H. Remita, A. Etcheberry, and J. Belloni, Dose rate effect on bimetallic gold-palladium cluster structure, J. Phys. Chem., B107, No. 1, 31–36 (2003).

    Google Scholar 

  72. H. Remita, I. Lampre, M. Mostafavi, E. Balanzat, and S. Bouffard, Comparative study of metal clusters induced in aqueous solutions by γ-rays, electron or C6+ ion beam irradiation, Radiat. Phys. Chem., 72, No. 5, 575–586 (2005).

    Article  Google Scholar 

  73. K. Naghavi, E. Saion, K. Rezaee, and W. M. M. Yunus, Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation, Radiat. Phys. Chem., 79, No. 12, 1203–1208 (2010).

    Article  Google Scholar 

  74. Q. Yang, K. Tang, F. Wang, C. Wang, and Y. Qian, A γ-irradiation reduction route to nanocrystalline CdE (E = Se, Te) at room temperature, Mater. Lett., 57, Nos. 22–23, 3508–3512 (2003).

    Article  Google Scholar 

  75. C.-C. Kim, C. Wang, Y.-C. Yang, et al., X-ray synthesis of nickel-gold composite nanoparticles, Mater. Chem. Phys., 100, Nos. 2–3, 292–295 (2006).

    Article  Google Scholar 

  76. K. Dick, T. Dhanasekaran, Z. Zhang, et al., Size-dependent melting of silica-encapsulated gold nanoparticles, J. Am. Chem. Soc., 124, No. 10, 2312–2317 (2002).

    Article  Google Scholar 

  77. K. A. Valiev, Physics of Submicron Lithography [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  78. T. R. Groves, D. Pickard, B. Rafferty, et al., Maskless electron lithography: prospects, progress, and challenges, Microelectron. Eng., 6162, 285–293 (2002).

    Article  Google Scholar 

  79. C. Vieu, F. Carcenac, A. Pepin, et al., Electron beam lithography: resolution limits and applications, Appl. Surf. Sci., 164, Nos. 1–4, 111–117 (2000).

    Article  Google Scholar 

  80. L. Scalia, New challenge on lithography process for nanostructure fabrication, in: A. G. Chmielewski (Ed.), Emerging Applications of Radiation in Nanotechnology, IAEA TECDOC-1438, Vienna: IAEA (2005), pp. 213–219.

    Google Scholar 

  81. T. Borzenko, C. Gould, G. Schmidt, and L. W. Molenkamp, Metallic air-bridges fabricated by multiple acceleration voltage electron beam lithography, Microelectron. Eng., 75, No. 2, 210–215 (2004).

    Article  Google Scholar 

  82. W. Weber, G. Ilicali, J. Kretz, et al., Electron beam lithography for nanometer-scale planar double-gate transistors, Microelectron. Eng., 7879, 206–211 (2005).

    Article  Google Scholar 

  83. Y. Chen, Z. Lu, X. Wang, et al., Fabrication of ferromagnetic nanoconstructions by electron beam lithography using LOR/PMMA bilayer technique, Microelectron. Eng., 84, Nos. 5–8, 1499–1502 (2007).

    Article  Google Scholar 

  84. Y. Sohda, H. Ohta, F. Murai, et al., Recent progress in cell-projection electron-beam lithography, Microelectron. Eng., 6768, 78–86 (2003).

    Article  Google Scholar 

  85. W. Zhang, A. Potts, D. M. Bagnall, and B. R. Davidson, High-resolution electron beam lithography for the fabrication of high-density dielectric metamaterials, Thin Solid Films, 515, Nos. 7–8, 3714–3717 (2007).

    Article  Google Scholar 

  86. G. Rius, J. Llobet, J. Arcamone, et al., Electron- and ion-beam lithography for the fabrication of nanomechanical devices integrated on CMOS circuit, Microelectron. Eng., 86, Nos. 4–6, 1046–1049 (2009).

    Article  Google Scholar 

  87. Y. Ishii and J. Taniguchi, Fabrication of three-dimensional nanoimprint mold using inorganic resist in low accelerating voltage electron beam lithography, Microelectron. Eng., 84, Nos. 5–8, 912–915 (2007).

    Article  Google Scholar 

  88. K. Mølhave, D. N. Madsen, and P. Bøggild, A simple electron-beam lithography system, Ultramicroscopy, 102, No. 3, 215–219 (2005).

    Article  Google Scholar 

  89. J. Taniguchi, K. Koga, Y. Kogo, and I. Miyamoto, Rapid and three-dimensional nanoimprint template fabrication technology using ion beam lithography, Microelectron. Eng., 83, Nos. 4–9, 940–943 (2006).

    Article  Google Scholar 

  90. S. Iwamitsu, M. Nagao, S. A. Pahlovy, et al., Ion beam lithography by using highly charged beam of Ar, Colloids Surf., A313314, 407–410 (2008).

    Google Scholar 

  91. B. Rout, A. D. Dymnikov, D. P. Zachry, et al., High energy heavy ion beam lithography in silicon, Nucl. Instrum. Meth., B261, Nos. 1–2, 731–735 (2007).

    Google Scholar 

  92. S. Iwamitsu, M. Nagao, S. A. Pahlovy, et al., Ion beam lithography by using highly charged ion beam of Ar, Colloids Surf., A313314, 407–410 (2008).

    Google Scholar 

  93. P. Meyer, J. Schulz, and V. Saile, Deep X-ray lithography, in: Y. Qin (Ed.), Micromanufacturing Engineering and Technology, Elsevier, Amsterdam (2010), pp. 202–220.

    Chapter  Google Scholar 

  94. F. Romanato, L. Businaro, L. Vaccari, et al., Fabrication of 3D metallic photonic crystals by X-ray lithography, Microelectron. Eng., 6768, 479–486 (2003).

    Article  Google Scholar 

  95. T. Mappes, S. Achenbach, and J. Mohr, X-ray lithography for devices with high aspect ratio polymer submicron structures, Microelectron. Eng., 84, Nos. 5–8, 1235–1239 (2007).

    Article  Google Scholar 

  96. F. Romanato, M. Tormen, L. Businaro, et al., X-ray lithography for 3D microfluidic applications, Microelectron. Eng., 7374, 870–875 (2004).

    Article  Google Scholar 

  97. J. M. Rosiak, P. Ulanski, and S. Kadubowski, Conventional and radiation synthesis of polymeric nano- and microgels and their possible applications, in: A. G. Chmielewski (Ed.), Emerging Applications of Radiation in Nanotechnology, IAEA TECDOC–1438, Vienna: IAEA (2005), pp. 99–120.

    Google Scholar 

  98. P. Ulanski and J. M. Rosiak, The use of radiation technique in the synthesis of polymeric nanogels, Nucl. Instrum. Meth., B151, Nos. 1–4, 356–360 (1999).

    Google Scholar 

  99. S.-E. Park, Y.-C. Nho, and H.-I. Kim, Preparation of poly(polyethylene glycol methacrylate-co-acrylic acid) hydrogels by radiation and their physical properties, Radiat. Phys. Chem., 69, No. 3, 221–227 (2004).

    Article  Google Scholar 

  100. F. J. Xu, K. G. Neoh, and E. T. Kang, Bioactive surfaces and biomaterials via atom transfer radical polymerization, Prog. Polym. Sci., 34, No. 8, 719–761 (2009).

    Article  Google Scholar 

  101. J. M. Rosiak, I. Janik, S. Kadubowski, et al., Nano-, micro- and macroscopic hydrogels synthesized by radiation technique, Nucl. Instrum. Meth., B208, Nos. 1–4, 325–330 (2003).

    Google Scholar 

  102. K. F. Arndt, T. S. Schmidt, and R. Reichelt, Thermo-sensitive poly(methyl vinyl ether) micro-gel formed by high energy radiation, Polymer, 42, No. 16, 6785–6791 (2001).

    Article  Google Scholar 

  103. P. Ulanski, S. Kadukowski, and J. M. Rosiak, Synthesis of poly(acrylic acid) nanogels by preparative pulse radio-lysis, Radiat. Phys. Chem., 63, Nos. 3–6, 533–537 (2002).

    Article  Google Scholar 

  104. J.-C. An, Synthesis of the combined inter- and intra-crosslinked nanohydrogels by e-beam ionizing radiation, J. Ind. Eng. Chem., 16, No. 5, 657–661 (2010).

    Google Scholar 

  105. V. Vijayabaskar, S. Bhattacharya, V. K. Tikku, and A. K. Bhowmick, Electron beam initiated modification of acrylic elastomer in presence of polyfunctional monomers, Radiat. Phys. Chem., 71, No. 5, 1045–1058 (2004).

    Article  Google Scholar 

  106. A. Henke, S. Kadukowski, P. Ulanski, et al., Radiation-induced cross-linking of polyvinylpyrrolidonepoly( acrylic acid) complexes, Nucl. Instrum. Meth., B236, Nos. 1–4, 391–398 (2005).

    Google Scholar 

  107. S. Mitra, S. Chattopadhyay, S. Sabharwal, and A. K. Bhowmick, Electron beam crosslinked gels — preparation, characterization, and their effect on the mechanical, dynamic mechanical, and rheological properties of rubbers, Radiat. Phys. Chem., 79, No. 3, 289–296 (2010).

    Article  Google Scholar 

  108. K. Makuuchi, Critical review of radiation processing of hydrogel and polysaccharide, Radiat. Phys. Chem., 79, No. 3, 267–271 (2010).

    Article  Google Scholar 

  109. T. Xu, N. Zhang, H. L. Nichols, D. Shi, and X. Wen, Modification of nanostructural materials for biomedical applications, Mater. Sci. Eng., C27, No. 3, 579–594 (2007).

    Google Scholar 

  110. Yu. P. Maishev, Yu. P. Terent’ev, and S. L. Shevchuk, Sources of ions and ion-beam technologies of applying and etching film structures for micro- and nanoelectronics, Integral, 50, No. 6, 18–19 (2009).

    Google Scholar 

  111. N. Savvides, Surface microroughness of ion-beam etched optical surfaces, J. Appl. Phys., 97, No. 053517, 1–7 (2005).

    Google Scholar 

  112. T. Sadoh, H. Eguchi, A. Kenjo, and M. Miyao, Etching characteristics of SiO2 irradiated with focused ion beam, Nucl. Instrum. Meth., B206, No. 1, 478–481 (2003).

    Google Scholar 

  113. S. Xu, W. Zheng, X. Yuan, H. Lv, and X. Zu, Recovery of fused surface damage resistance by ion beam ething, Nucl. Instrum. Meth., B266, No. 15, 3370–3374 (2008).

    Google Scholar 

  114. A. Perentos, A. Mitchell, and A. Holland, Ion beam etching of high resolution structures in Ta2O5 for gratingassisted directional coupler applications, Appl. Surf. Sci., 252, No. 5, 1006–1012 (2005).

    Article  Google Scholar 

  115. Y. Kawabata, J. Taniguchi, and I. Miyamoto, XPS studies on damage evaluation of single-crystal diamond chips processed with ion beam etching and reactive ion beam assisted chemical etching, Diamond Relat. Mater., 13, No. 1, 93–98 (2004).

    Article  Google Scholar 

  116. V. S. Smentkowski, Trends in sputtering, Prog. Surf. Sci., 64, Nos. 1–2, 1–58 (2000).

    Article  Google Scholar 

  117. A. I. Stognii, N. N. Nivitskii, and O. M. Stukalov, Ion-beam polishing of the nanodimensional relief of optical materials, Pis’ma Zh. Tekh. Fiz., 28, No. 1, 39–48 (2002).

    Google Scholar 

  118. E. Bourelle, A. Suzuki, A. Sato, T. Seki, and J. Matsuo, Sidewall polishing with a gas cluster ion beam for photonic device applications, Nucl. Instrum. Meth., B241, Nos. 1–4, 622–625 (2005).

    Google Scholar 

  119. Z. Insepov, A. Hassanein, J. Norem, and D. R. Swenson, Advanced surface polishing using gas cluster ion beams, Nucl. Instrum. Meth., B261, Nos. 1–2, 664–668 (2007).

    Google Scholar 

  120. B. Koslowski, S. Strobel, and P. Ziemann, Ion polishing of a diamond (100) surface artificially roughened on the nanoscale, Diamond Relat. Mater., 9, Nos. 3–6, 1159–1163 (2000).

    Article  Google Scholar 

  121. V. V. Uglov, V. M. Anishchik, V. V. Astashynski, et al. Structure-phase transformation of high speed steel by various high intensity ion-plasma treatments, Surf. Coat. Technol., 180181, 108–112 (2004).

    Article  Google Scholar 

  122. A. A. Avdienko and K. I. Avdienko, Strengthening of the surface of structural metals and alloys by the method of ion-beam processing, Uprochnyayushchie Tekhnologii i Pokrytiya, No. 12, 16–17 (2009).

  123. E. Weiser, M. Peikert, C. Wenzel, et al. Improvement of Ta-based thin film barriers on cooper by ion implantation of nitrogen and oxygen, Thin Solid Films, 410, Nos. 1–2, 121–128 (2002).

    Article  Google Scholar 

  124. N. N. Cherenda, V. V. Uglov, G. V. Litvinovich, and A. L. Danilyuk, The effect of Ti ions implantation on the structure of anodic alumina films, Nucl. Instrum. Meth., B211, No. 2, 219–226 (2003).

    Google Scholar 

  125. M. Ikeyama, S. Nakao, H. Morikawa, et al., Increase of surface hardness induced by O, Ca, of P ion implantation into titanium, Surf. Coat. Technol., 128129, 400–403 (2000).

    Article  Google Scholar 

  126. I. Tsyganov, E. Weiser, W. Matz, H. Reuther, and E. Richter, Modification of the Ti–6Al–4V alloy by ion implantation of calcium and/or phosphorus, Surf. Coat. Technol., 158159, 318–323 (2002).

    Article  Google Scholar 

  127. I. V. Tereshko, V. V. Abidzina, I. E. Elkin, et al., Formation of nanostructures in metals by low-energy ion irradiation, Surf. Coat. Technol., 201, Nos. 19–20, 8552–8556 (2007).

    Article  Google Scholar 

  128. Y. Gotoh, K. Kagamimori, H. Tsuji, and J. Ishikawa, Ion beam assisted deposition of tantalum nitride thin films for vacuum microelectronics devices, Surf. Coat. Technol., 158159, 729–731 (2002).

    Article  Google Scholar 

  129. A. Mitsuo, T. Mori, Y. Setsuhara, S. Miyake, and T. Aizawa, Mechanical properties of zirconium films prepared by ion-beam assisted deposition, Nucl. Instrum. Meth., B206, No. 1, 366–370 (2003).

    Google Scholar 

  130. P. Mosaner, M. Bonelli, and A. Miotello, Ion beam assisted deposition of lubricant Ag(Au) films on non-planar steel substrates, Surf. Coat. Technol., 180181, 41–43 (2004).

    Article  Google Scholar 

  131. W. Ensinger and M. Kiuchi, Ion beam assisted deposition of nitrogen-containing chromium films: a comparison of argon vs nitrogen ions, Surf. Coat. Technol., 203, Nos. 17–18, 2763–2766 (2009).

    Article  Google Scholar 

  132. J. Leng, Z. Yu, Y. Li, D. Zhang, X. Liao, and W. Xue, Optical and electrical properties of Y2O3 thin films prepared by ion beam assisted deposition, Surf. Coat. Technol., 256, No. 20, 5832–5836 (2010).

    Google Scholar 

  133. Y. Han, D. Kim, J.–S. Cho, Y.–W. Beag, S.–K. Koh, and V. S. Chernysh, Effects of substrate treatment on the initial growth mode of indium-tin-oxide films, J. Appl. Phys., 97, No. 024910, 1–6 (2005).

    Google Scholar 

  134. K. A. Valiev, Yu. P. Maishev, and S. L. Shevchuk, Reactive ion-beam synthesis of thin films directly from ion beams, Fizicheskaya Inzheneriya Poverkhnosti, 1, No. 1, 27–33 (2003).

    Google Scholar 

  135. A. V. Byeli, M. A. Belotserkovskii, and V. A. Kukareko, Microstructure and wear resistance of thermal sprayed steel coatings ion beam implanted with nitrogen, Wear, 267, Nos. 9–10, 1757–1761 (2009).

    Article  Google Scholar 

  136. M. A. Bruk, E. N. Zhikharev, A. V. Spirin, and V. A. Kal’nov, Application of thin polymer films on different kinds of substrates by the method of polymerization of monomers from the vapor phase under the action of an electron beam, Vysokomol. Soedin., A45, No. 1, 45–53 (2003).

    Google Scholar 

  137. P. Roose, I. Fallais, C. Vandermiers, M.-G. Olivier, and M. Poelman, Radiation curing technology: An attractive technology for metal coating, Prog. Org. Coat., 64, No. 1, 163–170 (2009).

    Article  Google Scholar 

  138. El-S. A. Hegazy, H. A. Abd El-Rehim, H. Kamal, and K. A. Kandeel, Advances in radiation grafting, Nucl. Instrum. Meth., B185, Nos. 1–4, 235–240 (2001).

    Google Scholar 

  139. Z. Y. Xi, Y. Y. Xu, L. P. Zhu, and B. K. Zhu, Modification of polytetrafluoroethylene porous membranes by electron beam initiated surface grafting of binary monomers, J. Membr. Sci., 339, Nos. 1–2, 33–38 (2009).

    Article  Google Scholar 

  140. A. Yu. Shmykova, S. V. Mjakin, I. V. Vasiljeva, et al., Electron beam initiated grafting of methacryloxypropyl–trimethoxysilane to fused silica glass, Appl. Surf. Sci., 255, No. 12, 6391–6396 (2009).

    Article  Google Scholar 

  141. A. Vahdat, H. Bahrami, N. Ansari, and F. Ziaie, Radiation grafting of styrene onto polypropylene fibres by a 10 MeV electron beam, Radiat. Phys. Chem., 76, No. 5, 787–793 (2007).

    Article  Google Scholar 

  142. J. Chen, D. Li, H. Koshikawa, M. Asano, and Y. Makaewa, Crosslinking and grafting of polyetheretherketone film by radiation techniques for application in fuel cells, J. Membr. Sci., 362, Nos. 1–2, 488–494 (2010).

    Article  Google Scholar 

  143. L. Dai (Ed.), Carbon Nanotechnology, Elsevier, Amsterdam (2006).

    Google Scholar 

  144. A. V. Krasheninnikov and K. Nordlund, Irradiation effects in carbon nanotubes, Nucl. Instrum. Meth., B216, No. 1, 355–366 (2004).

    Google Scholar 

  145. A. Ando, T. Shimizu, H. Abe, Y. Nakayama, and H. Tokumoto, Improvement of electrical contact at carbon nanotube, Pt by selective electron irradiation, Physica, E24, Nos. 1–2, 6–9 (2004).

    Google Scholar 

  146. A. Ishaq, L. Yan, and D. Zhu, The electrical conductivity of carbon nanotube sheets by ion beam irradiation, Nucl. Instrum. Meth., B267, No. 10, 1779–1782 (2009).

    Google Scholar 

  147. Z. Ni, Q. Li, L. Yan, J. Gong, and D. Zhu, Welding of multi-walled carbon nanotubes by ion beam irradiation, Carbon, 46, No. 2, 376–377 (2008).

    Article  Google Scholar 

  148. J. Kotakoski, J. A. V. Pomoell, A. V. Krasheninnikov, and K. Nordlund, Irradiation-assisted substitution of carbon atoms with nitrogen and boron in single-walled carbon nanotubes, Nucl. Instrum. Meth., B228, Nos. 1– 4, 31–36 (2005).

    Google Scholar 

  149. J. Onoe, T. Nakayama, M. Aono, and T. Hara, The electron transport properties of photo- and electron-beamirradiated C60 films, J. Phys. Chem. Solids, 65, Nos. 2–3, 343–348 (2004).

    Article  Google Scholar 

  150. V. Gupta, P. Scharff, and N. Miura, Synthesis of diamond on electron irradiation of C60 intercalated graphite, Mater. Lett., 59, No. 26, 3259–3261 (2005).

    Article  Google Scholar 

  151. D. M. Guldi, Radiation chemistry of fullerenes, Studies Phys. Theor. Chem., 87, No. 1, 253–286 (2001).

    Article  Google Scholar 

  152. A. K. Geim, Graphene: status and prospects, Science, 324, No. 5934, 1530–1534 (2009).

    Article  Google Scholar 

  153. C. Soldano, A. Mahmood, and E. Dujardin, Production, properties and potential of graphene, Carbon, 48, No. 10, 2127–2150 (2010).

    Article  Google Scholar 

  154. M. I. Katsnelson and K. S. Novoselov, Graphene: new bridge between condensed matter physics and quantum electronics, Solid State Commun., 143, Nos. 1–2, 3–13 (2007).

    Article  Google Scholar 

  155. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys., 81, No. 1, 109–162 (2009).

    Article  Google Scholar 

  156. J. S. Wu, W. Pisula, and K. Mullen, Graphenes as potential material for electronics, Chem. Rev., 107, No. 3, 718–747 (2007).

    Article  Google Scholar 

  157. Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, Operation of graphene transistors at gigahertz frequencies, Nano Lett., 9, No. 1, 422–426 (2009).

    Article  Google Scholar 

  158. N. L. Rangel and J. A. Seminario, Graphene terahertz generators for molecular circuits and sensors, J. Phys. Chem., A112, No. 51, 13699–13705 (2008).

    Google Scholar 

  159. M. T. Lusk and L. D. Carr, Creation of graphene allotropes using patterned defects, Carbon, 47, No. 9, 2226–2232 (2009).

    Article  Google Scholar 

  160. C. O. Girit, J. C. Meyer, R. Erni, et. al., Graphene at the edge: stability and dynamics, Science, 232, No. 5922, 1705–1708 (2009).

    Article  Google Scholar 

  161. O. Leenaerts, B. Partoens, and F. M. Peeters, Adsorption of small molecules on graphene, Microelectron. J., 40, Nos. 4–5, 860–862 (2009).

    Article  Google Scholar 

  162. S. Casolo, O. M. Løvik, R. Martinazzo, and G. F. Tantardini, Understanding adsorption of hydrogen atoms on graphene, J. Chem. Phys., 130, No. 054704, 1–10 (2009).

    Google Scholar 

  163. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, et al., Control of graphene’s properties by reversible hydrogenation: evidence for graphane, Science, 323, No. 5914, 610–613 (2009).

    Article  Google Scholar 

  164. D. Teweldebrhan and A. A. Balandin, Modification of graphene properties due to electron-beam irradiation, Appl. Phys. Lett., 94, No. 013101, 1–3 (2009).

    Google Scholar 

  165. G. Compagnini, F. Giannazzo, S. Sonde, V. Raineri, and E. Rimini, Ion irradiation and defects formation in single layer graphene, Carbon, 47, No. 14, 3201–3207 (2009).

    Article  Google Scholar 

  166. G. Ya. Gerasimov, Radiation stability of carbon nanostructures, Inzh.-Fiz. Zh., 83, No. 2, 369–375 (2010).

    MathSciNet  Google Scholar 

  167. J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, Imaging and dynamics of light atoms and molecules on graphene, Nature, 454, No. 7202, 319–322 (2008).

    Article  Google Scholar 

  168. K.–J. Kim, J. Choi, H. Lee, et al., Effects of 1 MeV electron beam irradiation on multilayer graphene grown on 6H–SiC(0001), J. Phys. Chem., 112, No. 34, 13062–13064 (2008).

    Google Scholar 

  169. J. D. Jones, K. K. Mahajan, W. H. Williams, P. A. Ecton, and J. M. Perez, Formation of graphane and partially hydrogenated graphene by electron irradiation of adsorbates on graphene, Carbon, 48, No. 8, 2335–2340 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ya. Gerasimov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 84, No. 4, pp. 873–889, July–August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerasimov, G.Y. Radiation methods in nanotechnology. J Eng Phys Thermophy 84, 947–963 (2011). https://doi.org/10.1007/s10891-011-0554-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-011-0554-0

Keywords

Navigation