Skip to main content
Log in

Parapheromones for Thynnine Wasps

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Sexually deceptive orchids produce floral volatiles that attract male insect pollinators. This interaction between flower and pollinator normally is highly specific. In the few cases where the chemical composition of the volatiles is known, the compounds have been found to be identical to those that comprise the sex pheromone of the female wasp. In this study, we investigated whether there is potential for flexibility in the molecular structure of the chemical cues used to mediate these specific interactions. Specifically, we asked whether strong sexual attraction can be maintained with structural modifications of sex pheromone components. Our study focused on the orchid, Drakaea glyptodon, which is pollinated by males of the thynnine wasp, Zaspilothynnus trilobatus. Three alkylpyrazines and a unique hydroxymethylpyrazine are components of the female produced sex pheromone of Z. trilobatus, and also the semiochemicals produced by the orchid that lures the males as pollinators. A blend of 2-butyl-3,5-dimethylpyrazine and 2-hydroxymethyl-3,5-diethyl-6-methylpyrazine (3:1) is as attractive as the full blend of four compounds. Therefore, in this study we substituted 2-hydroxymethyl-3,5-diethyl-6-methylpyrazine with one of five structurally related parapheromones in a blend with 2-butyl-3,5-dimethylpyrazine. All blends tested stimulated approaches by male wasps, with some also eliciting landing and attempted copulation. High-level calculations (G4(MP2)) showed the energy differences between the structural isomers were small, although the degree of sexual attraction varied, indicating the importance of structural factors for activity. One of the parapheromones, 2-hydroxymethyl-3,5-dimethyl-6-ethylpyrazine, elicited similar proportions of approaches, landings, and attempted copulations as the sex pheromone at the ratio and dose tested. The findings suggest that there is potential for chemical flexibility in the evolution of sexual deception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2

Similar content being viewed by others

References

  • Ando T, Kuroko H, Nakagaki S, Saito O, Oku T, Takahashi N (1981) Multi-component sex attractants in systematic field tests of male Lepidoptera. Agric Biol Chem 45:487–495

    Article  CAS  Google Scholar 

  • Ayasse M, Dötterl S (2014) The role of preadaptations or evolutionary novelties for the evolution of sexually deceptive orchids. New Phytol 203:710–712

    Article  PubMed  Google Scholar 

  • Ayasse M, Paxton R, Tengö J (2001) Mating behavior and chemical communication in the order Hymenoptera. Annu Rev Entomol 46:31–78

    Article  CAS  PubMed  Google Scholar 

  • Ayasse M, Schiestl FP, Paulus HF, Ibarra F, Francke W (2003) Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. Proc R Soc B 270:517–522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ayasse M, Stökl J, Francke W (2011) Chemical ecology and pollinator-driven speciation in sexually deceptive orchids. Phytochemistry 72:1667–1677

    Article  CAS  PubMed  Google Scholar 

  • Beani L, Dessì-Fulgheri F, Cappa F, Toth A (2014) The trap of sex in social insects: from the female to the male perspective. Neurosci Biobehav Rev 46:519–533

    Article  PubMed  Google Scholar 

  • Bierl BA, Beroza M, Collier C (1970) Potent sex attractant of the gypsy moth: its isolation, identification, and synthesis. Science 170:87–89

    Article  CAS  PubMed  Google Scholar 

  • Bohman B, Peakall R (2014) Pyrazines attract Catocheilus thynnine wasps. Insects 5:474–487

    Article  PubMed Central  PubMed  Google Scholar 

  • Bohman B, Jeffares L, Flematti G, Byrne LT, Skelton BW, Phillips RD, Dixon KW, Peakall R, Barrow RA (2012a) Discovery of tetrasubstituted pyrazines as semiochemicals in a sexually deceptive orchid. J Nat Prod 75:1589–1594

    Article  CAS  PubMed  Google Scholar 

  • Bohman B, Jeffares L, Flematti G, Phillips RD, Dixon KW, Peakall R, Barrow RA (2012b) The discovery of 2-hydroxymethyl-3-(3-methylbutyl)-5-methylpyrazine: a semiochemical in orchid pollination. Org Lett 14:2576–2578

    Article  CAS  PubMed  Google Scholar 

  • Bohman B, Berntsson B, Dixon RCM, Stewart CD, Barrow RA (2014a) Alkylations and hydroxymethylations of pyrazines via green Minisci-type reactions. Org Lett 16:2787–2789

    Article  CAS  PubMed  Google Scholar 

  • Bohman B, Phillips RD, Menz MHM, Berntsson BW, Flematti GR, Barrow RA, Dixon KW, Peakall R (2014b) Discovery of pyrazines as pollinator sex pheromones and orchid semiochemicals: implications for the evolution of sexual deception. New Phytol 203:939–953

    Article  CAS  PubMed  Google Scholar 

  • Borg-Karlson A-K (1985) Chemical basis for the relationship between Ophrys orchids and their pollinators. Chem Scr 25:283–294

    CAS  Google Scholar 

  • Borg-Karlson A-K (1987) Chemical basis for the relationship between Ophrys orchids and their pollinators. Chem Scr 27:313–325

    CAS  Google Scholar 

  • Borg-Karlson A-K (1990) Chemical and ethological studies of pollination in the genus Ophrys (Orchidaceae). Phytochemistry 29:1359–1387

    Article  CAS  Google Scholar 

  • Cardé RT. 1990. Principles of mating disruption. Behavior-modifying chemicals for pest management: Applications of pheromones and other attractants. Marcel Dekker, New York:47–71

  • Coleman E (1929) Pollination of an Australian orchid by the male ichneumonid Lissopimpla semipunctata, Kirby. Trans R Entomol Soc Lond 76:533–539

    Article  Google Scholar 

  • Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory using reduced order perturbation theory. The J Chem Phys 127:124105

    Article  PubMed  Google Scholar 

  • Francke W, Schulz S (2010) 4.04 - Pheromones of terrestrial invertebrates. In: Liu H-W, Mander L (eds) Comprehensive natural products II. Elsevier, Oxford, pp. 153–223

    Chapter  Google Scholar 

  • Franke S, Ibarra F, Schulz CM, Twele R, Poldy J, Barrow RA, Peakall R, Schiestl FP, Francke W (2009) The discovery of 2,5-dialkylcyclohexan-1,3-diones as a new class of natural products. Proc Natl Acad Sci U S A 106:8877–8882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, revision D. 01. Gaussian, Wallingford, CT, USA

    Google Scholar 

  • Gaskett AC (2011) Orchid pollination by sexual deception: pollinator perspectives. Biol Rev 86:33–75

    Article  CAS  PubMed  Google Scholar 

  • Griffiths KE, Trueman JWH, Brown GR, Peakall R (2011) Molecular genetic analysis and ecological evidence reveals multiple cryptic species among thynnine wasp pollinators of sexually deceptive orchids. Mol Phylogenet Evol 59:195–205

    Article  PubMed  Google Scholar 

  • Kullenberg B (1950) Investigations on the pollination of Ophrys species. Oikos 2:1–19

    Article  Google Scholar 

  • Menz MHM, Phillips RD, Anthony JM, Bohman B, Dixon KW, Peakall R (2015) Ecological and genetic evidence for cryptic ecotypes in a rare sexually deceptive orchid, Drakaea elastica. Bot J Linn Soc 177:124–140

    Article  Google Scholar 

  • Niehuis O, Buellesbach J, Gibson JD, Pothmann D, Hanner C, Mutti NS, Judson AK, Gadau J, Ruther J, Schmitt T (2013) Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones. Nature 494:345–348

    Article  CAS  PubMed  Google Scholar 

  • Ono M, Sasaki M (1987) Sex pheromones and their cross-activities in six Japanese sympatri species of the genus Vespa. Insect Soc 34:252–260

    Article  Google Scholar 

  • Paulus H, Gack C (1990) Pollinators as prepollinating isolation factors: evolution and speciation in Ophrys (Orchidaceae). Israel J Bot 39:43–79

    Google Scholar 

  • Peakall R (1990) Responses of male Zaspilothynnus trilobatus wasps to females and the sexually deceptive orchid it pollinates. Funct Ecol 4:159–167

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peakall R, Ebert D, Poldy J, Barrow RA, Francke W, Bower CC, Schiestl FP (2010) Pollinator specificity, floral odour chemistry and the phylogeny of Australian sexually deceptive Chiloglottis orchids: implications for pollinator-driven speciation. New Phytol 188:437–450

    Article  CAS  PubMed  Google Scholar 

  • Phillips RD, Faast R, Bower CC, Brown GR, Peakall R (2009) Implications of pollination by food and sexual deception for pollinator specificity, fruit set, population genetics and conservation of Caladenia (Orchidaceae). Aust J Bot 57:287–306

    Article  Google Scholar 

  • Phillips RD, Scaccabarozzi D, Retter BA, Hayes C, Brown GR, Dixon KW, Peakall R (2014) Caught in the act: pollination of sexually deceptive trap-flowers by fungus gnats in Pterostylis (Orchidaceae). Ann Bot 113:629–641

    Article  PubMed Central  PubMed  Google Scholar 

  • Renou M, Guerrero A (2000) Insect parapheromones in olfaction research and semiochemical-based pest control strategies. Annu Rev Entomol 45:605–630

    Article  CAS  PubMed  Google Scholar 

  • Roelofs WL, Comeau A (1968) Sex pheromone perception. Nature 220:600–601

    Article  CAS  PubMed  Google Scholar 

  • Roelofs WL, Comeau A (1969) Sex pheromone specificity: taxonomic and evolutionary aspects in Lepidoptera. Science 165:398–400

    Article  CAS  PubMed  Google Scholar 

  • Schiestl FP, Cozzolino S (2008) Evolution of sexual mimicry in the orchid subtribe Orchidinae: the role of preadaptations in the attraction of male bees as pollinators. BMC Evol Biol 8:27

    Article  PubMed Central  PubMed  Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, Francke W (1999) Orchid pollination by sexual swindle. Nature 399:421–422

    Article  CAS  Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, Francke W (2000) Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): patterns of hydrocarbons as the key mechanism for pollination by sexual deception. J Comp Phys A 186:567–574

    Article  CAS  Google Scholar 

  • Schiestl FP, Peakall R, Mant JG, Ibarra F, Schulz C, Franke S, Francke W (2003) The chemistry of sexual deception in an orchid-wasp pollination system. Science 302:437–438

    Article  CAS  PubMed  Google Scholar 

  • Schlüter PM, Schiestl FP (2008) Molecular mechanisms of floral mimicry in orchids. Trends Plant Sci 13:228–235

    Article  PubMed  Google Scholar 

  • Schneider D, Lange R, Schwarz F, Beroza M, Bierl BA (1974) Attraction of male gypsy and nun moths to Disparlure and some of its chemical analogues. Oecologia 14:19–36

    Article  Google Scholar 

  • Stökl J, Dandekar A-T, Ruther J (2014) High chemical diversity in a wasp pheromone: a blend of methyl 6-methylsalicylate, fatty alcohol acetates and cuticular hydrocarbons releases courtship behavior in the Drosophila parasitoid Asobara tabida. J Chem Ecol 40:159–168

    Article  PubMed  Google Scholar 

  • Symonds MR, Elgar MA (2008) The evolution of pheromone diversity. Trends Ecol Evol 23:220–228

    Article  PubMed  Google Scholar 

  • Vereecken NJ, Schiestl FP (2008) The evolution of imperfect floral mimicry. Proc Natl Acad Sci U S A 105:7484–7488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitehead MR, Peakall R (2014) Pollinator specificity drives strong prepollination reproductive isolation in sympatric sexually deceptive orchids. Evolution 68:1561–1575

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ryan Phillips and Alyssa Weinstein for insightful comments on the manuscript. Funding was provided by the Australian Research Council (LP0989338 and LP130100162 to RP and RAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Bohman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohman, B., Karton, A., Dixon, R.C.M. et al. Parapheromones for Thynnine Wasps. J Chem Ecol 42, 17–23 (2016). https://doi.org/10.1007/s10886-015-0660-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-015-0660-0

Keywords

Navigation