Skip to main content
Log in

Phytohormone Dynamics Associated with Gall Insects, and their Potential Role in the Evolution of the Gall-Inducing Habit

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

While plant galls can be induced by a variety of organisms, insects produce the most diverse and complex galls found in nature; yet, how these galls are formed is unknown. Phytohormones have long been hypothesized to play a key role in gall production, but their exact role, and how they influence galls, has been unclear. Research in the past decade has provided better insight into the role of plant hormones in gall growth and plant defenses. We review and synthesize recent literature on auxin, cytokinins, and abscisic, jasmonic, and salicylic acids to provide a broader understanding of how these phytohormones might effect gall production, help plants defend against galls, and/or allow insects to overcome host-plant defenses. After reviewing these topics, we consider the potential for phytohormones to have facilitated the evolution of insect galls. More specialized research is needed to provide a mechanistic understanding of how phytohormones operate in gall-insect-plant interactions, but current evidence strongly supports phytohormones as key factors determining the success and failure of insect galls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abrahamson WG, McCrea KD, Whitwell AJ, Vernieri LA (1991) The role of phenolics in goldenrod ball gall resistance and formation. Biochem Syst Ecol 19:615–622

    Article  CAS  Google Scholar 

  • Allison SD, Schultz JC (2005) Biochemical responses of chestnut oak to a galling cynipid. J Chem Ecol 31:151–166

    Article  CAS  PubMed  Google Scholar 

  • Anderson SS, McCrea KD, Abrahamson WG, Hartzel LM (1989) Host genotype choice by the ball gall maker Eurosta solidaginis (Diptera: Tephritidae). Ecology 70:1048–1054

    Article  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Bartlett L, Conner EF (2014) Exogenous phytohormones and the induction of plant galls by insects. Arthropod-Plant Interactions (in press)

  • Bostock RM (1999) Signal conflicts and synergies in induced resistance to multiple attackers. Physiol Mol Plant Path 55:99–109

    Article  Google Scholar 

  • Bourguet D, Ponsard S, Streiff R, Meusnier S, Audiot P, Li J, Wang Z-Y (2014) Becoming a species by becoming a pest’ or how two maize pests of the genus Ostrinia possibly evolved through parallel ecological speciation events. Mol Ecol 23:325–342

    Article  CAS  Google Scholar 

  • Byers JA, Brewer JW, Denna DW (1976) Plant growth hormones in pinyon insect galls. Marcellia 39:125–134

    CAS  Google Scholar 

  • Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF, Hoover K, Luthe DS, Felton GW (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci U S A 110:15728–15733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conner EF, Bartlett L, O’Toole S, Byrd S, Biskar K, Orozco J (2012) The mechanism of gall induction makes galls red. Arthropod Plant Interact 6:489–495

    Article  Google Scholar 

  • Cornell HV (1983) The secondary chemistry and complex morphology of galls formed by the Cynipinae (Hymenoptera): why and how? Am Midl Nat 110:225–232

    Article  Google Scholar 

  • Dafoe NJ, Thomas JD, Shirk PD, Legaspi ME, Vaughan MM, Huffaker A, Teal PF, Schmelz EA (2013) European corn borer (Ostrinia nubilalis) induced responses enhance susceptibility in maize. PLoS One 8:e73394. doi:10.1371/journal.pone.0073394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Darwin, C. R. 1875. The variation of animals and plants under domestication. 2nd edition. Volume 2. John Murray, London, UK.

  • Davey MR, Curtis IS, Gartland KMA, Power JB (1994) Agrobacterium-induced crown gall and hairy root diseases: their biology and application to plant genetic engineering. In: Williams MAJ (ed) Plant galls: Organisms, interactions, populations. Oxford University Press, New York, NY, USA, pp 9–56

    Google Scholar 

  • Davies PJ (2004) The plant hormones: their nature, occurrence, and functions. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Academic Publishers, Dordrecht, The Netherlands, pp 1–15

    Google Scholar 

  • Dawkins R (1982) The extended phenotype. Oxford University Press, Oxford, UK

    Google Scholar 

  • De Bruyn LJ, Vandevyvere J, Jaminé D, Prisen E (1998) The effects of gall formation by Lipara lucens (Diptera: Chloropidae) on its host Phragmites australis (Poaceae). In: Csóka G, Mattson WJ, Stone GN, Price PW (eds) The biology of gall-inducing arthropods. General technical report NC-199. USDA Forest Service, St. Paul, MN, USA, pp 173–187

    Google Scholar 

  • De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Article  Google Scholar 

  • De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel nonspecific females. Nature 410:577–580

    Article  PubMed  Google Scholar 

  • Dempewolf M (2005) Dipteran leaf miners. In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology, and evolution of gall-inducing arthropods, vol 1. Science Publishers, Enfield, NH, USA, pp 407–429

    Google Scholar 

  • Dénarié FD, Promé J-C (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    Article  PubMed  Google Scholar 

  • Dorchin N, Hoffmann JH, Stirk WA, Novák O, Strnad M, van Staden J (2009) Sexually dimorphic structures correspond to differential phytohormone contents in male and female larvae of a pteromalid wasp. Physiol Entomol 34:359–369

    Article  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Erb M, Flors V, Karlen D, De Lange E, Planchamp C, D’Alessandro M, Turlings T, Ton J (2009) Signal signature of aboveground induced resistance upon belowground herbivory in maize. Plant J 59:292–302

    Article  CAS  PubMed  Google Scholar 

  • Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feldmann KA, Marks MD (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 208:1–9

    Article  CAS  Google Scholar 

  • Fernandes GW (1990) Hypersensitivity: a neglected plant resistance mechanism against insect herbivores. Environ Entomol 19:1173–1182

    Google Scholar 

  • Fernandes GW, Negreiros D (2001) The occurrence and effectiveness of hypersensitive reaction against galling herbivores across host taxa. Ecol Entomol 26:46–55

    Article  Google Scholar 

  • Fernandes GW, Duarte H, Lüttge U (2003) Hypersensitivity of Fagus sylvatica L. against leaf galling insects. Trees 17:407–411

    Article  Google Scholar 

  • Friend J (1979) Phenolic substances and plant disease. Biochemistry of plant phenolics Rec Adv Phytochem 12:557–588

    Article  Google Scholar 

  • Giron D, Kaiser W, Imbault N, Casas J (2007) Cytokinin-mediated leaf manipulation by a leafminer caterpillar. Biol Letters 3:340–343

    Article  CAS  Google Scholar 

  • Gullan PJ, Miller DR, Cook LG (2005) Gall-inducing scale insects (Hemiptera: Sternorrhyncha: Coccoidea). In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology, and evolution of gall-inducing arthropods, vol 1. Science Publishers, Enfield, NH, USA, pp 159–230

    Google Scholar 

  • Harris MO, Stuart JJ, Mohan M, Nair S, Lamb RJ, Rohfritsch O (2003) Grasses and gall midges: plant defense and insect adaptation. Annu Rev Entomol 48:549–577

    Article  CAS  PubMed  Google Scholar 

  • Hartley SE (1998) The chemical composition of plant galls - are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia 113:492–501

    Article  Google Scholar 

  • Hartley SE (1999) Are gall insects large Rhizobia? Oikos 84:333–342

    Article  Google Scholar 

  • Helms AM, De Moraes CM, Tooker JF, Mescher MC (2013) Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory. Proc Natl Acad Sci U S A 110:199–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Higton RN, Mabberley DJ (1994) A willow gall from the galler’s point of view. In: Williams MAJ (ed) Plant galls: organisms, interactions, populations. Oxford University Press, New York, NY, USA, pp 283–300

    Google Scholar 

  • Höglund S, Larsson S, Wingsle GJ (2005) Both hypersensitive and non-hypersensitive responses are associated with resistance in Salix viminalis against the gall midge Dasineura marginemtorquens. J Exp Bot 56:3215–3222

    Article  PubMed  Google Scholar 

  • Hori K (1992) Insect secretions and their effect on plant growth, with special reference to hemipterans. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced plant galls. Oxford University Press, New York, NY, USA, pp 157–170

    Google Scholar 

  • Hough JS (1953) Studies on the common spangle gall of oak: II. A general consideration of past work on gall induction New Phytol 52:218–228

    Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Jameson P (2000) Cytokinins and auxins in plant-pathogen interactions – an overview. J Plant Growth Reg 32:369–380

    Article  CAS  Google Scholar 

  • Kaiser W, Huguet E, Casas J, Commin C, Giron D (2010) Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. P Roy Soc B-Biol Sci B 277:2311–2319

    Article  CAS  Google Scholar 

  • Kazan K, Manners JM (2009) Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci 14:373–380

    Article  CAS  PubMed  Google Scholar 

  • Kefeli VI, Kutacek M (1977) Phenolic substances and their possible role in plant growth regulation. In: Pilet PE (ed) Plant growth regulation. Springer, Berlin, Germany, pp 181–188

    Chapter  Google Scholar 

  • Kernan A, Thornburg RW (1989) Auxin levels regulate the expression of a wound-inducible proteinase inhibitor II-chloramphenicol acetyl transferase gene fusion in vitro and in vivo. Plant Physiol 91:73–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kjellberg F, Jousselin E, Hossaert-McKey M, Rasplus J-Y (2005) Biology, ecology, and evolution of fig-pollinating wasps (Chalcidoidea, Agaonidae). In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology, and evolution of gall-inducing arthropods, vol 2. Science Publishers, Enfield, NH, USA, pp 539–572

    Google Scholar 

  • Künkler N, Brandl R, Brändle M (2013) Changes in clonal poplar leaf chemistry caused by stem galls alter herbivory and leaf litter decomposition. PLoS One 8:e79994. doi:10.1371/journal.pone.0079994

    Article  PubMed Central  PubMed  Google Scholar 

  • La Salle J (2005) Biology of gall inducers and evolution of gall induction in Chalcidoidea (Hymenoptera: Eulophidae, Eurytomidae, Pteromalidae, Tanaostigmatidae, Torymidae). In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology, and evolution of gall-inducing arthropods, vol 2. Science Publishers, Enfield, NH, USA, pp 507–538

    Google Scholar 

  • Leicht IJ (1994) Induction and development of the bean gall caused by Pontania proxima. In: Williams MAJ (ed) Plant galls: Organisms, interactions, populations. Oxford University Press, New York, NY, USA, pp 283–300

    Google Scholar 

  • Mapes CC, Davies PJ (2001a) Indole-3-acetic acid and ball gall development on Solidago altissima. New Phytol 151:195–202

    Article  CAS  Google Scholar 

  • Mapes CC, Davies PJ (2001b) Cytokinins in the ball gall of Solidago altissima and in the gall forming larvae of Eurosta solidaginis. New Phytol 151:203–212

    Article  CAS  Google Scholar 

  • Matsukura K, Matsumura M, Tokuda M (2009) Host manipulation by the orange leafhopper Cicadulina bipunctata: gall induction on distant leaves by dose-dependent stimulation. Naturwissenschaften 96:1059–1066

    Article  CAS  PubMed  Google Scholar 

  • McCalla DR, Genthe MK, Hovanitz W (1962) Chemical nature of an insect gall growth-factor. Plant Physiol 37:98–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer VA, Miersch O, Büttner C, Dathe W, Sembdner G (1984) Occurrence of the plant growth regulator jasmonic acid in plants. J Plant Growth Reg 3:1–8

    Article  CAS  Google Scholar 

  • Miles PW (1999) Aphid saliva. Biol Rev 74:41–85

    Article  Google Scholar 

  • Mills RR (1969) Effect of plant and insect hormones on the formation of the goldenrod gall. Natl Cancer Inst Mono 31:487–491

    CAS  Google Scholar 

  • Mur LAJ, Kenton P, Lloyd AJ, Ougham H, Prats E (2008) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59:501–520

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Nyman T, Julkunen-Tiitto R (2000) Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc Natl Acad Sci U S A 97:13184–13187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ollerstam O, Larsson S (2003) Salicylic acid mediates resistance in the willow Salix viminalis against the gall midge Dasineura marginemtorquens. J Chem Ecol 29:163–174

    Article  CAS  PubMed  Google Scholar 

  • Ollerstam O, Rohfritsch O, Höglund S, Larsson S (2002) A rapid hypersensitive response associated with resistance in the willow Salix viminalis against the gall midge Dasineura marginemtorquens. Entomol Exp Appl 102:153–162

    Article  Google Scholar 

  • Peña-Cortés H, Sánchez-Serrano JJ, Mertens R, Willmitzer L, Prat S (1989) Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc Natl Acad Sci U S A 86:9851–9855

  • Price PW (1992) Evolution and ecology of gall-inducing sawflies. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced plant galls. Oxford University Press, New York, NY, USA, pp 208–224

    Google Scholar 

  • Raman A, Schaefer CW, Withers TM (2005) Galls and gall-inducing arthropods: an overview of their biology, ecology and evolution. In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology, and evolution of gall-inducing arthropods, vol 1. Science Publishers, Enfield, NH, USA, pp 1–33

    Google Scholar 

  • Rawat N, Himabindu K, Neeraja CN, Nair S, Bentur JS (2013) Suppressive subtraction hybridization reveals that rice gall midge attack elicits plant-pathogen-like responses in rice. Plant Phys Biochem 63:122–130

    Article  CAS  Google Scholar 

  • Robert-Seilaniantz A, Navarro L, Bari R, Jones JD (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379

    Article  CAS  PubMed  Google Scholar 

  • Rohfritsch O (1981) A “defense” mechanism of Picea excelsa L. against the gall former Chermes abietis L. (Homoptera, Adelgidae). Z Angew Entomol 92:18–26

    Article  Google Scholar 

  • Rohfritsch O (1992) Patterns in gall development. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced plant galls. Oxford University Press, New York, NY, USA, pp 60–86

    Google Scholar 

  • Ronquist F (1999) Phylogeny, classification and evolution of the Cynipoidea. Zool Scr 28:139–164

    Article  Google Scholar 

  • Roskam JC (1992) Evolution of the gall-inducing guild. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced plant galls. Oxford University Press, New York, NY, USA, pp 34–50

    Google Scholar 

  • Roskam HC (2005) Phylogeny of gall midges. In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology, and evolution of gall-inducing arthropods, vol 1. Science Publishers, Enfield, NH, USA, pp 305–320

    Google Scholar 

  • Sandström J, Telang A, Moran NA (2000) Nutritional enhancement of host plants by aphids — a comparison of three aphid species on grasses. J Insect Physiol 46:33–40

    Article  PubMed  Google Scholar 

  • Saniewski M, Ueda J, Miyamoto K (2002) Relationships between jasmonates and auxin in regulation of some physiological processes in higher plants. Acta Physiol Plant 24:211–220

    CAS  Google Scholar 

  • Sopow SL, Shorthouse JD, Strong W, Quiring DT (2003) Evidence for long-distance, chemical gall induction by an insect. Ecol Letters 6:102–105

    Article  Google Scholar 

  • Spíchal L (2012) Cytokinins – recent news and views of evolutionally old molecules. Func Plant Biol 39:267–284

    Article  Google Scholar 

  • Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522

    Article  Google Scholar 

  • Straka JR, Hayward AR, Emery NRJ (2010) Gall-inducing Pachypsylla celtidis (Psyllidae) infiltrate hackberry trees with high concentrations of phytohormones. J Plant Inter 5:197–203

    Article  CAS  Google Scholar 

  • Tjia B, Houston DB (1975) Phenolic constituents of Norway spruce resistant or susceptible to the eastern spruce gall aphid. Forest Sci 21:180–184

    CAS  Google Scholar 

  • Tokuda M, Jikumaru Y, Matsukura K, Takebayashi Y, Kumashiro S, Matsumura M, Kamiya Y (2013) Phytohormones related to host plant manipulation by a gall-inducing leafhopper. PLoS One 8:e62350. doi:10.1371/journal.pone.0062350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tooker JF, De Moraes CM (2007) Feeding by Hessian fly [Mayetiola destructor (Say)] larvae does not induce plant indirect defences. Ecol Entomol 32:153–161

    Article  Google Scholar 

  • Tooker JF, De Moraes CM (2008) Gall insects and indirect plant defenses: a case of active manipulation? Plant Sig. Behav 3:79–80

    Google Scholar 

  • Tooker JF, De Moraes CM (2009) A gall-inducing caterpillar species increases essential fatty acid content of its host plant without concomitant increases in phytohormone levels. Mol Plant-Microbe Inter 22:551–559

    Article  CAS  Google Scholar 

  • Tooker JF, De Moraes CM (2011a) Feeding by a gall-inducing caterpillar species increases levels of indole-3-acetic and decreases abscisic acid in Solidago altissima stems. Arthropod-Plant Int 5:115–124

    Article  Google Scholar 

  • Tooker JF, De Moraes CM (2011b) Feeding by Hessian fly (Mayetiola destructor [Say]) larvae increases levels of fatty acids and indole-3-acetic acid, but not hormones involved in plant-defense signaling. J Plant Growth Reg 30:158–165

    Article  CAS  Google Scholar 

  • Tooker JF, Hanks LM (2004) Endophytic insect communities of two prairie perennials (Asteraceae: Silphium spp.). Biodivers Conserv 13:2551–2566

    Article  Google Scholar 

  • Tooker JF, Deans AR, Hanks LM (2004) Description of the Antistrophus rufus (Hymenoptera: Cynipidae) species complex, including two new species. J Hymen Res 13:125–133

    Google Scholar 

  • Tooker JF, Rohr JR, Abrahamson WG, De Moraes CM (2008) Gall insects can avoid and alter indirect plant defenses. New Phytol 178:657–671

    Article  CAS  PubMed  Google Scholar 

  • Ueda J, Kato J (1982) Inhibition of cytokinin-induced plant growth by jasmonic acid and its methyl ester. Physiol Plant 54:249–52

    Article  CAS  Google Scholar 

  • Walling L (2000) The myriad of plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Hendrickson Culler A, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann Bot 111:1021–1058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Westphal E, Bronner R, Le Ret M (1981) Changes in leaves of susceptible and resistant Solanum dulcamara infested by the gall mite Eriophyes cladophthirus (Acarina, Eriophyoidea) Can. J Bot 59:875–882

    Google Scholar 

  • Westphal E, Perrot-Minnot MJ, Kreiter S, Gutierrez J (1992) Hypersensitive reaction of Solanum dulcamara to the gall mite Aceria cladophthirus causes an increased susceptibility to Tetranychus urticae. Exp Appl Acarol 1:15–26

    Article  Google Scholar 

  • Wood BW, Payne JA (1988) Growth regulators in chestnut shoot galls infected with oriental chestnut gall wasp (Hymenoptera: Cynipidae). Environ Entomol 17:915–920

    CAS  Google Scholar 

  • Yamaguchi H, Tanaka H, Hasegawa M, Tokuda M, Asami T, Suzuki Y (2012) Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytol 196:586–95

    Article  CAS  PubMed  Google Scholar 

  • Yang C-M, Yin M-H, Chang K-W, Tsai C-J, Huang S-M, Yang M-M (1998) Analysis of pigment-protein complexes in two cecidomyiid galls. In: Csóka G, Mattson WJ, Stone GN, Price PW (eds) The biology of gall-inducing arthropods. General technical report NC-199. USDA Forest Service, St. Paul, MN, USA, pp 188–192

    Google Scholar 

  • Zhu L, Chen MS, Liu X (2011) Changes in phytohormones and fatty acids in wheat and rice seedlings in response to Hessian fly (Diptera: Cecidomyiidae) infestation. J Econ Entomol 104:1384–1392

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Editor Romeo and Drs. Dicke and van Loon for the invitation to contribute to this special issue, Nick Sloff for producing the figure, and two anonymous reviewers for improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Tooker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tooker, J.F., Helms, A.M. Phytohormone Dynamics Associated with Gall Insects, and their Potential Role in the Evolution of the Gall-Inducing Habit. J Chem Ecol 40, 742–753 (2014). https://doi.org/10.1007/s10886-014-0457-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0457-6

Keywords

Navigation