Skip to main content
Log in

Stability of Plant Defensive Traits Among Populations in Two Eucalyptus Species Under Elevated Carbon Dioxide

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plant secondary metabolites (PSMs) mediate a wide range of ecological interactions. Investigating the effect of environment on PSM production is important for our understanding of how plants will adapt to large scale environmental change, and the extended effects on communities and ecosystems. We explored the production of PSMs under elevated atmospheric carbon dioxide ([CO2]) in the species rich, ecologically and commercially important genus Eucalyptus. Seedlings from multiple Eucalyptus globulus and E. pauciflora populations were grown in common glasshouse gardens under elevated or ambient [CO2]. Variation in primary and secondary chemistry was determined as a function of genotype and treatment. There were clear population differences in PSM expression in each species. Elevated [CO2] did not affect concentrations of individual PSMs, total phenolics, condensed tannins or the total oil yield, and there was no population by [CO2] treatment interaction for any traits. Multivariate analysis revealed similar results with significant variation in concentrations of E. pauciflora oil components between populations. A [CO2] treatment effect was detected within populations but no interactions were found between elevated [CO2] and population. These eucalypt seedlings appear to be largely unresponsive to elevated [CO2], indicating stronger genetic than environmental (elevated [CO2]) control of expression of PSMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrell, J., McDonald, E. P., and Lindroth, R. L. 2000. Effects of CO2 and light on tree phytochemistry and insect performance. Oikos 88:259–272.

    Article  CAS  Google Scholar 

  • andrew, R. L., Wallis, I. R., Harwood, C. E., Henson, M., and Foley, W. J. 2007. Heritable variation in the foliar secondary metabolite sideroxylonal in Eucalyptus confers cross-resistance to herbivores. Oecologia 153:891–901.

    Article  PubMed  Google Scholar 

  • Andrew, R. L., Wallis, I. R., Harwood, C. E., and FFoley, W. J. 2010. Genetic and environmental contributions to variation and population divergence in a broad-spectrum foliar defence of Eucalyptus tricarpa. Ann. Bot. 105:707–717.

    Article  PubMed  Google Scholar 

  • Attiwell, P. M. and Leeper, G. W. 1987. Forest soils and nutrient cycles. Melbourne University Press, Melbourne.

    Google Scholar 

  • Atwell, B. J., Henery, M. L., and Ball, M. C. 2009. Does soil nitrogen influence growth, water transport and survival of snow gum (Eucalyptus pauciflora Sieber ex Sprengel.) under CO2 enrichment? Plant Cell Environ. 32:553–566.

    Article  PubMed  CAS  Google Scholar 

  • Bidart-Bouzat, M. G. and Imeh-Nathaniel, A. 2008. Global change effects on plant chemical defenses against insect herbivores. J. Integr. Plant Biol. 50:1339–1354.

    Article  PubMed  CAS  Google Scholar 

  • Bignell, C. M., Dunlop, P. J., and Brophy, J. J. 1998. Volatile leaf oils of some south-western and southern Australian species of the genus Eucalyptus (series 1). Part XIX. Flavour Frag. J. 13:131–139.

    Article  CAS  Google Scholar 

  • Brooker, I. 2002. Botany of the eucalypts, pp. 3–35, in J. J. W. Coppen (ed.), Eucalyptus: The Genus Eucalyptus. Taylor & Francis, London.

    Google Scholar 

  • Butcher, P. A., McDonald, M. W., and Bell, J. C. 2009. Congruence between environmental parameters, morphology and genetic structure in Australia’s most widely distributed eucalypt, Eucalyptus camaldulensis. Tree Genet. Genomes 5:189–210.

    Article  Google Scholar 

  • Close, D. C., Davidson, N. J., Churchill, K. C., and Grosser, P. 2005. Evaluation of establishment techniques on Eucalyptus nitens and E. pauciflora in the Midlands of Tasmania. Ecol. Manag. Restor. 6:149–151.

    Article  Google Scholar 

  • Close, D. C., Davidson, N. J., Churchill, K. C., and Corkrey, R. 2010. Establishment of native Eucalyptus pauciflora and exotic Eucalyptus nitens on former grazing land. New For. 40:143–152.

    Article  Google Scholar 

  • Davies, N. W. 1990. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbioxwax 20 M phases. J. Chromatogr. 503:1–24.

    Article  CAS  Google Scholar 

  • Eldridge, K. G., Davidson, J., Harwood, C., and van Wyk, G. 1993. Eucalypt Domestication and Breeding. Clarendon, Oxford.

    Google Scholar 

  • Eschler, B. M., Pass, D. M., Willis, R., and Foley, W. J. 2000. Distribution of foliar formylated phloroglucinol derivatives amongst Eucalyptus species. Biochem. Syst. Ecol. 28:813–824.

    Article  PubMed  CAS  Google Scholar 

  • Eyles, A., Davies, N. W., and Mohammed, C. 2003. Novel detection of formylated phloroglucinol compounds (FPCs) in the wound wood of Eucalyptus globulus and E. nitens. J. Chem. Ecol. 29:881–898.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, J. S., O’Reilly-Wapstra, J. M., VVaillancourt, R. E., Wiggins, N., and Potts, B. M. 2008. Quantitative trait loci for key defensive compounds affecting herbivory of eucalypts in Australia. New Phytol. 178:846–851.

    Article  PubMed  CAS  Google Scholar 

  • Fritz, R. S. 1999. Resistance of hybrid plants to herbivores: genes, environment, or both? Ecology 80:382–391.

    Article  Google Scholar 

  • Gershenzon, J. and Dudareva, N. 2007. The function of terpene natural products in the natural world. Nat. Chem. Biol. 3:408–414.

    Article  PubMed  CAS  Google Scholar 

  • Gleadow, R. M., Foley, W. J., and Woodrow, I. E. 1998. Enhanced CO2 alters the relationship between photosynthesis and defence in cyanogenic Eucalyptus cladocalyx F. Muell. Plant Cell Environ. 21:12–22.

    Article  CAS  Google Scholar 

  • Graham, H. D. 1992. Stabilization of the prussian blue color in the determination of polyphenols. J. Agr. Food Chem. 40:801–805.

    Article  CAS  Google Scholar 

  • Griffin, K. L., Bashkin, M. A., Thomas, R. B., and Strain, B. R. 1997. Interactive effects of soil nitrogen and atmospheric carbon dioxide on root/rhizosphere carbon dioxide efflux from loblolly and ponderosa pine seedlings. Plant Soil 190:11–18.

    Article  CAS  Google Scholar 

  • Hagerman, A. E. 2002. Tannin Chemistry. Miami University, Oxford.

    Google Scholar 

  • HOLMES, Z. 2009. Genetics of flammability in E. globulus [Thesis]. Hobart, Tasmania, Australia: University of Tasmania.

  • Hovenden, M. J. and Williams, A. L. 2010. The impacts of rising CO2 concentrations on Australian terrestrial species and ecosystems. Austral. Ecol. 35:665–684.

    Article  Google Scholar 

  • IPCC. 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge, UK & New York, NY, USA.

  • Knepp, R. G., Hamilton, J. G., Mohan, J. E., Zangerl, A. R., Berenbaum, M. R., and Delucia, E. H. 2005. Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New Phytol. 167:207–218.

    Article  PubMed  CAS  Google Scholar 

  • Kuokkanen, K., Niemelä, P., Matala, J., Julkunen-Tiitto, R., Heinonen, J., Rousi, M., Henttonen, H., Tahvanainen, J., and Kellomäki, S. 2004. The effects of elevated CO2 and temperature on the resistance of winter-dormant birch seedlings (Betula pendula) to hares and voles. Global Change Biol. 10:1504–1512.

    Article  Google Scholar 

  • Lawler, I. R., Foley, W. J., Woodrow, I. E., and Cork, S. J. 1997. The effects of elevated CO2 atmospheres on the nutritional quality of Eucalyptus foliage and its interaction with soil nutrient and light availability. Oecologia 109:59–68.

    Article  Google Scholar 

  • Li, H., Madden, J. L., and Potts, B. M. 1995. Variation in volatile leaf oils of the Tasmanian Eucalyptus species I. Subgenus Monocalyptus. Biochem. Syst. Ecol. 23:299–318.

    Article  CAS  Google Scholar 

  • Li, H., Madden, J. L., and Potts, B. M. 1996. Variation in volatile leaf oils of the Tasmanian Eucalyptus species II. Subgenus Symphyomyrtus. Biochem. Syst. Ecol. 24:547–569.

    Article  CAS  Google Scholar 

  • Lindroth, R. L. 2010. Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. J. Chem. Ecol. 36:2–21.

    Article  PubMed  CAS  Google Scholar 

  • Lindroth, R. L., Kinney, K. K., and Platz, C. L. 1993. Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology 74:763–777.

    Article  CAS  Google Scholar 

  • Long, S. P., Ainsworth, E. A., Rogers, A., and Ort, D. R. 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annu. Rev. Plant Biol. 55:591–628.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, W. J., Kuokkanen, K., Niemela, P., Julkunen-Tiitto, R., Kellomaki, S., and Tahvanainen, J. 2004. Elevated CO2 alters birch resistance to Lagomorpha herbivores. Global Change Biol. 10:1402–1413.

    Article  Google Scholar 

  • McCarthy, H. R., Oren, R., Johnsen, K. H., Gallet-Budynek, A., Pritchard, S. G., Cook, C. W., Ladeau, S. L., Jackson, R. B., and Finzi, A. C. 2010. Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: Interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol. 185:514–528.

    Article  PubMed  CAS  Google Scholar 

  • McElrone, A. J., Reid, C. D., Hoye, K. A., Hart, E., and Jackson, R. B. 2005. Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Global Change Biol. 11:1828–1836.

    Article  Google Scholar 

  • McMurtrie, R. E., Norby, R. J., Medlyn, B. E., Dewar, R. C., Pepper, D. A., Reich, P. B., and Barton, C. V. M. 2008. Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis. Funct. Plant Biol. 35:521–534.

    Article  CAS  Google Scholar 

  • Moore, B. D., Wallis, I. R., Palá-Paúl, J., Brophy, J. J., Willis, R. H., and Foley, W. J. 2004. Antiherbivore chemistry of Eucalyptus—Cues and deterrents for marsupial folivores. J. Chem. Ecol. 30:1743–1769.

    Article  PubMed  CAS  Google Scholar 

  • Moore, B. D., Foley, W. J., Wallis, I. R., Cowling, A., and Handasyde, K. A. 2005. Eucalyptus foliar chemistry explains selective feeding by koalas. Biol. Lett. 1:64–67.

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly-Wapstra, J. M., McArthur, C., and Potts, B. M. 2004. Linking plant genotype, plant defensive chemistry and mammal browsing in a Eucalyptus species. Funct. Ecol. 18:677–684.

    Article  Google Scholar 

  • O’Reilly-Wapstra, J. M., Humphreys, J. R., and Potts, B. M. 2007. Stability of genetic-based defensive chemistry across life stages in a Eucalyptus species. J. Chem. Ecol. 33:1876–1884.

    Article  PubMed  Google Scholar 

  • O’Reilly-Wapstra, J. M., Bailey, J. K., McArthur, C., and Potts, B. M. 2010. Genetic-and chemical-based resistance to two mammalian herbivores varies across the geographic range of Eucalyptus globulus. Evol. Ecol. Res. 12:491–505.

    Google Scholar 

  • O’Reilly-Wapstra, J. M., Freeman, J. S., Davies, N. W., Vaillancourt, R. E., Fitzgerald, H., and Potts, B. M. 2011. Quantitative trait loci for foliar terpenes in a global eucalypt species. Tree Genet. Genomes 7:485–498.

    Article  Google Scholar 

  • Steinbauer, M. J. 2010. Latitudinal trends in foliar oils of eucalypts: environmental correlates and diversity of chrysomelid leaf-beetles. Austral Ecol. 35:204–213.

    Article  Google Scholar 

  • Thomas, S. M., Whitehead, D., Reid, J. B., Cook, F. J., Adams, J. A., and Leckie, A. C. 1999. Growth, loss, and vertical distribution of Pinus radiata fine roots growing at ambient and elevated CO2 concentration. Global Change Biol. 5:107–121.

    Article  Google Scholar 

  • Wallis, I. R. and Foley, W. J. 2005. The rapid determination of sideroxylonals in Eucalyptus foliage by extraction with sonication followed by HPLC. Phytochem. Anal. 16:49–54.

    Article  PubMed  CAS  Google Scholar 

  • Wallis, I. R., Watson, M. L., and Foley, W. J. 2002. Secondary metabolites in Eucalyptus melliodora: field distribution and laboratory feeding choices by a generalist herbivore, the common brushtail possum. Aust. J. Zool. 50:507–519.

    Article  Google Scholar 

  • Whitham, T. G., Bailey, J. K., Schweitzer, J. A., Shuster, S. M., Bangert, R. K., Leroy, C. J., Lonsdorf, E. V., Allan, G. J., Difazio, S. P., Potts, B. M., Fischer, D. G., Gehring, C. A., Lindroth, R. L., Marks, J. C., Hart, S. C., Wimp, G. M., and Wooley, S. C. 2006. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 7:510–523.

    Article  PubMed  CAS  Google Scholar 

  • Wiggins, N. L., McArthur, C., McLean, S., and Boyle, R. 2003. Effects of two plant secondary metabolites, cineole and gallic acid, on nightly feeding patterns of the common brushtail possum. J. Chem. Ecol. 29:1447–1464.

    Article  PubMed  CAS  Google Scholar 

  • Wiggins, N. L., Marsh, K. J., Wallis, I. R., Foley, W. J., and McArthur, C. 2006. Sideroxylonal in Eucalyptus foliage influences foraging behaviour of an arboreal folivore. Oecologia 147:272–279.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Hugh Fitzgerald for assistance with laboratory work, Ian Cummings and Tracy Winterbottom for glasshouse support, and Greg Jordan, Joe Bailey, René Vaillancourt, Natasha Wiggins, Rebecca Jones and Tanya Bailey for comments on the manuscript. We thank Alieta Eyles for FPC standards. We also thank anonymous reviewers for offering constructive feedback on the manuscript. The work was supported by ARC Discovery grants to BP and JO’R-W (DP0773686), and by ARC Linkage grant LP0991026 (industry partner Greening Australia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam B. McKiernan.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplemental Table 1

(DOCX 13 kb)

Supplemental Table 2

(DOCX 16 kb)

Supplemental Table 3

(DOCX 17 kb)

Supplemental Table 4

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKiernan, A.B., O’Reilly-Wapstra, J.M., Price, C. et al. Stability of Plant Defensive Traits Among Populations in Two Eucalyptus Species Under Elevated Carbon Dioxide. J Chem Ecol 38, 204–212 (2012). https://doi.org/10.1007/s10886-012-0071-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0071-4

Keywords

Navigation