Skip to main content
Log in

Anthratectone and Naphthotectone, Two Quinones from Bioactive Extracts of Tectona grandis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Two new quinones, (an isoprenoid quinone, and a dimeric anthraquinone) named naphthotectone and anthratectone, respectively, were isolated from bioactive leaf extracts from Tectona grandis. Their structures were determined by a combination of 1D and 2D NMR techniques. The bioactivity profile of naphthotectone was assessed using the etiolated wheat coleoptiles bioassay in aqueous solutions at concentrations ranging from 10−3 to 10−5M, as well as the standard target species lettuce, cress, tomato, and onion. Naphthotectone showed high level of activities in both bioassays. This fact, along with the presence of this compound as the major component in Tectona grandis, suggests that it may be involved in the allelopathic activity previously described for this species, and probably in other defense mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abad, M., and Bermejo, P. 2005. Biological activity of quinones. pp. 303-366, in Atta-ur-Rahman (ed.) Studies in Natural Products Chemistry, Vol. 30. Elsevier, Oxford, England

    Google Scholar 

  • Agarwal, S. C., Sarngadharan, M. G., and Seshadri, T. R. 1965. Coloring matter of teak leaves. Isolation and constitution of tectoleafquinone. Tetrahedron Lett. 6:2623-2626.

    Google Scholar 

  • Ahn, B.-Z., Baik, K.-U., Kweon, G-R, Lim, K., and Hwang, B-D. 1995. Acylshikonin analogues: synthesis and inhibition of DNA topoisomerase-I. J. Med. Chem. 38:1044–1047.

    Article  PubMed  CAS  Google Scholar 

  • Ahuwalia, V. K., and Seshadri, T. R. 1957. Chemical examination of Tectona grandis. Isolation of 3-hydroxy-2-methylanthraquinone. J. Sci. Ind. Res. (India). 16B:323.

    Google Scholar 

  • Betancourt, B. A. 1983. Silvicultura especial de árboles maderables tropicales. Editorial Científico-Técnica, Havana City, Cuba, pp. 342-345.

    Google Scholar 

  • Castellano, D., Macías, F. A., Castellano, M., and Cambronero, R. 2001. Spanish Patent Nº P9901565.

  • Cutler, H. G. 1984. Fresh look at the wheat coleoptiles bioassay. Pp. 1-9 in Proceedings of the 11th Annual Meeting of the Plant Growth Regulator Society of America, PGRSA, Boston, MS, USA.

  • Cutler, S. J., Hoagland, R. E., and Cutler, H. G. 2000. Evaluation of selected pharmaceuticals as potential herbicides: Bridging the gap between agrochemicals and pharmaceuticals. pp. 129-137, in S. S. Narwal, R. E. Hoagland (ed). Allelopathy in Ecological Agriculture and Forestry. Kluwer, Dordrecht, the Netherlands.

    Chapter  Google Scholar 

  • Davis, E. F. 1928. The toxic principle of Juglans nigra as identified with synthetic juglone and its toxic effects on tomato and alfalfa plants. Am. J. Bot. 15:620.

    Google Scholar 

  • Dayan, F. E., Rimando, A. M., Pan, Z., Baerson, S. R., Gimsing, A. L., and Duke, S. O. 2010. Sorgoleone. Phytochemistry 71:1032-1039.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, C. R., Barlow, H. W., and Lacey, H. J. J. 1964. The east malling coleoptiles straight growth test method. Exp. Bot. 15:166–176.

    Article  Google Scholar 

  • Hejl, A. M., Einhellig, F. A., and Rasmussen, J. A. 1993. Effects of juglone on growth, photosynthesis, and respiration. J. Chem. Ecol. 19:559-68.

    Article  CAS  Google Scholar 

  • Jacyno, J. M., and Cutler, H. G. 1993. Detection of herbicidal properties: scope and limitations of the etiolated wheat coleoptiles bioassay. PGRSA Quaterly 21:15-24.

    CAS  Google Scholar 

  • Jayakumar, M., Eyini, M., and Pannirselvam, A., 1987. Allelopathic effect of teak leaf extract on the seedling of groundnut and corn. Geobios 14:66-69.

    Google Scholar 

  • Joshi, K. C., Singh, P., and Pardasani, R. T. 1977. Chemical components of the roots of Tectona grandis and Gmelina arborea. Planta Med. 31:71–75.

    Article  Google Scholar 

  • Kagan, I. A., Rimando, A. M., and Dayan, F. E. 2003. Chromatographic separation and in vitro activity of sorgoleone congeners from the roots of Sorghum bicolor. J. Agric. Food Chem. 51:7589–7595.

    Article  PubMed  CAS  Google Scholar 

  • Khan, R. M., and Mlungwana, S. M. 1999. 5-Hydroxylapachol: a cytotoxic agent from Tectona grandis. Phytochemistry 50:439–442.

    Article  CAS  Google Scholar 

  • Krishna, A., Manjunath, G. O., Rathod, R., and Kannur, K. 2003. Allelopathic effect of four agroforestry tree species leaf leachates on seed germination of certain vegetable crops. Karnataka J. Agric. Sci. 16:430-433.

    Google Scholar 

  • Macias, F. A., Castellano, D., and Molinillo, J. M. G. 2000. Search for a standard phytotoxic bioassay for allelochemicals. Selection of standard target species. J. Agric. Food Chem. 48:2512–2521.

    CAS  Google Scholar 

  • Macías, F. A., Lacret, R., Varela, R. M., Nogueiras, C., and Molinillo, J. M. G. 2008. Bioactive apocarotenoids from Tectona grandis. Phytochemistry 69:2708–2715.

    Article  PubMed  Google Scholar 

  • Macías, F. A., Lacret, R., Varela, R. M., Nogueiras, C., and Molinillo, J. M. G. 2010. Isolation and Phytotoxicity of Terpenes from Tectona grandis. J. Chem. Ecol. 36:396-404.

    Article  PubMed  Google Scholar 

  • Martín Andrés, A., and Luna Del Castillo, J. D. 1990. Bioestadística para las Ciencias de la Salud, 3rd Ed. Norma, Madrid, Spain.

    Google Scholar 

  • Marwani, E., Kobayashi, A., Kajiyama, S., Fukusaki, E., Nitoda, T., Kanzaki, H., and Kawazu, K. 1997. Tectona grandis callus produces antibacterial triterpene acids not detected in the intact plant. Nat. Prod. Sci. 3:75–80.

    CAS  Google Scholar 

  • Mishra, J. and Prasad, U. N. 1980. Agri-silvicultural studies on raising of oil seeds like Sesamum indicum Linn. (til), Arachis hypogea Linn. (groundnut) and Glycine max Merril. (soybean) as cash crops in conjuction with D. sissoo and T. grandis at Mandar, Ranchi. Indian Forester 106:675–695.

    Google Scholar 

  • Naira, N., and Kaverkar, M. D. 2010. Isolation of phenolic compounds from methanolic extract of Tectona grandis. Res. J. Pharm. Biol. Chem. Sci. 1:221–225.

    Google Scholar 

  • Netzly, D. H., and Butler, L.G. 1986. Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Sci. 26:775–778.

    Article  CAS  Google Scholar 

  • Nitsch, J. P., and Nitsch, C. 1956. Studies on the growth of coleoptiles and first internode sections. A new sensitive, straight-growth test for auxins. Plant. Physiol. 31:94–111.

    Article  PubMed  CAS  Google Scholar 

  • Raets, G. H. 1965. Informe preliminar acerca del cultivo de Tectona grandis en la estación de Barinitas. Venezuela. Bol. Inst. Forestal Lat. Am. 18:29–40.

    Google Scholar 

  • Rizvi, S. J. H., Tahir, M. J. H., Rizvi, V. J. H., Kohli, R. K., and Ansari, A. K. 1999. Allelopathic interaction in Agroforestry systems. Crit. Rev. Plant. Sci. 18:773–796.

    Article  CAS  Google Scholar 

  • Rudman, P. 1960. Anthraquinones of teak (Tectona grandis). Chem. Ind. (London) 1356–1357.

  • Shibu, J. 2002. Black walnut allelopathy: current state of the science. pp. 149–172 in Inderjit, A.U. Mallik (eds.) Chemical Ecology of Plants: Allelopathy in Aquatic and Terrestrial Ecosystems. Birkhauser Verlag, Basel, Switzerland.

    Google Scholar 

  • Shukla, N., Kumar, M., Akanksha, A. G., Rahuja, N., Singh, A. B., Srivastava, A. K, Rajendran, S. M., and Maurya, R. 2010. Tectone, a new anthyperglycemic anthraquinone from Tectona grandis. Nat. Prod. Comm. 5:427–430.

    CAS  Google Scholar 

  • Silva, M. N., Ferreira, V. F., and Souza, M. C. B. V. 2003. Um panorama atual da Química e da farmacología de naftoquinonas, com ênfase na β-lapachona e derivados. Quim. Nova. 26:407-416.

    Article  Google Scholar 

  • Singh, N., Shukla, N., Singh, P., Sharma, R., Rajendran, S. M., Maurya, R., and Palit, G. 2010. Verbascoside isolated from Tectona grandis mediates gastric protection in rats via inhibiting proton pump activity. Fitoterapia 81:755-761

    Article  PubMed  CAS  Google Scholar 

  • Sumthong, P., Romero, R. R., and Verpoorte, R. 2008. Identification of Anti-Wood Rot compounds in Teak (Tectona grandis L.f.) Sawdust Extract. J. Wood Chem. Tech. 28: 247-260.

    Article  CAS  Google Scholar 

  • Wiersum, K. F. 1982. Tree gardening and taungya on Java: Examples of agroforestry techniques in the humid tropics. Agroforest Syst. 11:53–70.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministerio de Ciencia y Tecnología, Spain (Ministerio de Ciencia e Innovación; Project No. AGL2008-04716/AGR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco A. Macías.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacret, R., Varela, R.M., Molinillo, J.M.G. et al. Anthratectone and Naphthotectone, Two Quinones from Bioactive Extracts of Tectona grandis . J Chem Ecol 37, 1341–1348 (2011). https://doi.org/10.1007/s10886-011-0048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-0048-8

Key Words

Navigation