Skip to main content
Log in

Isolation and Phytotoxicity of Terpenes from Tectona grandis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

A study was carried out on the allelopathic potential of four forest species, Tectona grandis, Aleurites fordii, Gliricidia sepium, and Maytenus buxifolia. The most active species, T. grandis, was selected to perform a phytochemical study. A new compound, abeograndinoic acid, was isolated, and elucidation of its structure showed that this compound has an unusual carbon skeleton. A further 21 known terpenoids—including 4 sesquiterpenoids, 8 diterpenes and 9 triterpenes—also were isolated. A biosynthetic scheme for the presence of the new compound is proposed. Bioactivity profiles that used etiolated wheat coleoptiles and phytotoxicity bioassays on the isolated compounds were conducted. The compounds that presented the highest phytotoxic activity are the diterpenes 9 (2-oxokovalenic acid) and 12 (19-hydroxyferruginol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aliotta, G., Monaco, P., Pinto, G., Pollio, A., and Previteria, L. 1991. Potential allelochemical from Pistia stratiotes. J. Chem. Ecol. 17:2223–2234.

    Article  CAS  Google Scholar 

  • Atawodi, S. E., and Atawodi, J. C. 2009. Azadirachta indica (neem): a plant of multiple biological and pharmacological activities. Phytochem. Rev. 8:601–620.

    Article  CAS  Google Scholar 

  • Barros, G. M. C. C., and Teixeira, S. P. 2008. Pharmacobotanical study of two wild indigo species (Indigofera suffruticosa and Indigofera truxillensis, Leguminosae) with pharmacological properties. Rev. Bras. Farmacogn. 18:287–294.

    Article  CAS  Google Scholar 

  • Biessels, H., Van Der Kerk-van Hoof, A., Kettenes-van Den Bosch, J., and Salemink, C. 1974. Triterpenes from Prunus serotina and P. Lusitanica. Phytochemistry 13:203–207.

    Article  CAS  Google Scholar 

  • Bohlmann, F., and Mungai, G. M. 1990. Rearranged clerodanes and other diterpenes from Microglossa pyrrhopappa. Phytochemistry 29:3233–3241.

    Article  Google Scholar 

  • Bohlmann, F., Singh, P., Singh, R. K., Joshi, K. C., and Jaicupovic, J. 1985. A diterpene with a new carbon skeleton from Solidago altissima. Phytochemistry 24:1114–1115.

    Article  CAS  Google Scholar 

  • Brandao, M. G., Lacaille-dubois, M. A., Teixera, M. A., and Wagner, H. 1992. Triterpene saponins from the roots of Ampelozizyphus amazonikus. Phytochemistry 31:352–354.

    Article  CAS  PubMed  Google Scholar 

  • Cambie, R., Cox, R., and Sidwell, D. 1984. Phenolic diterpenoids of Podocarpus ferrugineus and other podocarps. Phytochemistry 23:333–336.

    Article  CAS  Google Scholar 

  • Castellano, D., Macías, F. A., Castellano, M., and Cambronero, R. 2001. Spanish Patent Nº P9901565.

  • Charleston, D. S., Gols, R., Hordijk, K. A., Kfir, R., Vet, L. E. M., and Dicke, M. 2006. Impact of botanical pesticides derived from Melia azedarach and Azadirachta indica plants on the emission of volatiles that attract parasitoids of the diamondback moth to cabbage plants. J. Chem. Ecol. 32:325–349.

    Article  CAS  PubMed  Google Scholar 

  • Cutler, H. G. 1984. Fresh look at the wheat coleoptile bioassay, pp. 1–9, in Proceedings of the 11th Annual Meeting of the Plant Growth Regulator Society of America, PGRSA, Boston, MS, USA.

  • Cutler, S. J., Hoagland, R. E., and Cutler, H. G. 2000. Evaluation of selected pharmaceuticals as potential herbicides: Bridging the gap between agrochemicals and pharmaceuticals, pp. 129–137, in S. S. Narwal, R. E. Hoagland, R. H. Dilday, and M. J. Reigosa Roger (eds.). Allelopathy in Ecological Agriculture and Forestry, Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Dekker, T. G., Fourie, T. G., Matthee, E., Snyckers, F., and Van Der Schyf, S. 1988. Studies of South African medicinal plants. Part 7. Rhinocerotinoic acid: a labdane diterpene with anti-inflammatory properties from Elytropappus rhinocerotis. Afr. J. Chem. 41:33–35.

    CAS  Google Scholar 

  • Dellagreca, M., Monaco, P., and Previtera, L. 1990. Stigmasterols from Typha latifolia. J. Nat. Prod. 53:1430–1435.

    Article  CAS  Google Scholar 

  • Fozdar, B. I., Khan, S. A., Shamsuddin, T., Shamsuddin, K. M., and Kintzinger, J. P. 1989. Aleuritin, a coumarinolignoid, and a coumarin from Aleurites fordii. Phytochemistry 28:2459–2461.

    Article  CAS  Google Scholar 

  • González, A. G., Jiménez, I. A., Ravelo, A. G., Coll, J., González, J. A., and Lloria, J. 1997. Antifeedant Activity of Sesquiterpenes from Celastraceae. Biochem. Syst. Ecol. 25:513–519

    Article  Google Scholar 

  • Gutierrez, A. B., and Herz, W. 1988. Guaianolides and other constituents of Helianthus microcephalus. Phytochemistry 27:2225–2228.

    Article  CAS  Google Scholar 

  • Hancock, C. R., Barlow, H. W., and Lacey, H. J. J. 1964. The east malling coleoptile straight growth test method. Exp. Bot. 15:166–176.

    Article  Google Scholar 

  • Hasan, C. M., Healey, T. M., and Waterman, P. G. 1982. Kolavane and kaurane diterpenes from the stem bark of Xilophia aethiopica. Phytochemistry 21:1365–1368.

    Article  CAS  Google Scholar 

  • Herath, H. M. T. B., Dassanayake, R. S., Priyadarshani, A. M. A., De Silva, S., Wannigama, G. P., and Jamie, J. 1997. Isoflavonoids and a pterocarpan from Gliricidia sepium. Phytochemistry 47:117–119.

    Article  Google Scholar 

  • Jacyno, J. M., and Cutler, H. G. 1993. Detection of herbicidal properties: scope and limitations of the etiolated wheat coleoptile bioassay. PGRSA Quaterly 21:15–24.

    CAS  Google Scholar 

  • Jakupovic, J., Banerjee, F., Bohlmann, F., King, R. M., and Robinson, H. 1986. New diterpenes from Chiliotrichium rosmariniflolium and Nardophyllum lanatum. Tetrahedron 42:1305–1313.

    Article  CAS  Google Scholar 

  • Joshi, K. C., Singh, P., and Pardasani, R. T. 1977. Chemical components of the roots of Tectona grandis and Gmelina arborea. Planta Med. 31:71–75.

    Article  Google Scholar 

  • Khanzada, S. K., Shaikh, W., Sofia, S., Kazi, T. G., Usmanghani, K., Kabir, A., and Sheerazi, T. H. 2008. Chemical constituents of Tamarindus indica L. medicinal plant in Sindh. Pak. J. Bot. 40:2553–2559.

    CAS  Google Scholar 

  • Macías, F. A., Castellano, D., and Molinillo, J. M. G. 2000. Search for a standard phytotoxic bioassay for allelochemicals. Selection of standard target species. J. Agric. Food Chem. 48:2512–2521.

    Article  PubMed  Google Scholar 

  • Macías, F. A., Lacret, R., Varela, R. M., Nogueiras, C., and Molinillo, J. M. G. 2008. Bioactive apocarotenoids from Tectona grandis. Phytochemistry 69:2708–2715.

    Article  PubMed  Google Scholar 

  • Marsaioli, A., De Freitas, H., and De Paiva, J. 1975. Diterpenes in the bark of Hymenea courbail. Phytochemistry 14:1882–1883.

    Article  CAS  Google Scholar 

  • Martín Andrés, A., and Luna Del Castillo, J. D. 1990. Bioestadística para las Ciencias de la Salud, 3rd ed. Madrid: Norma.

    Google Scholar 

  • Marwani, E., Kobayashi, A., Kajiyama, S., Fukusaki, E., Nitoda, T., Kanzaki, H., and Kawazu, K. 1997. Tectona grandis callus produces antibacterial triterpene acids not detected in the intact plant. Nat. Prod. Sci. 3:75–80.

    CAS  Google Scholar 

  • Naik, S.M., Jayaprakasha, G. K., and Singh, R. P. 2008. Antioxidant activity of custard apple (Annona squamosa) peel and seed extracts. J. Food Sci. Tech. 45:349–352.

    CAS  Google Scholar 

  • Nitsch, J. P., and Nitsch, C. 1956. Studies on the growth of coleoptile and first internode sections. A new sensitive, straight-growth test for auxins. Plant. Physiol. 31:94–111.

    Article  CAS  PubMed  Google Scholar 

  • Niwa, M., Igushi, M., and Yamamura, S. 1978. Niomimetic reactions of epoxygermacrane-D. Tetrahedron Lett. 19:4043–4046.

    Article  Google Scholar 

  • Pungitore C., García, M., Gianello, J., Sosa M., and Tonn, C. 2005. Insecticidal antifeedant effects of Junellia aspera (Verbenaceae) triterpenes and derivates on Sitophilius oryzae (Coleoptera: Curculionidae). J. Stored Prod. Res. 41:433–443.

    Article  CAS  Google Scholar 

  • Ramamoorthy, M., and Paliwal, K. 1993. Allelopathic compounds in leaves of Gliricidia sepium (Jacq.) Kunth ex Walp. and its effect on Sorghum vulgare L. J. Chem. Ecol. 19:1691–1701.

    Article  CAS  Google Scholar 

  • Rimpler, H., and Christiansen, I. Z. 1977. Tectograndinol, a new diterpene from Tectona grandis. Naturforsch (C) 32:724–730.

    Google Scholar 

  • Seebacher, W., Simic, N., Weis, R., Saf, R., and Kunert, O. 2003. Complete assignments of 1H and 13C NMR resonances of oleanic acid, 18α-aleanic acid, ursolic acid and their 11-oxo derivatives. Magn. Reson. Chem. 41:636–638.

    Article  CAS  Google Scholar 

  • Takahashi, K., Kawaguchi, S., Nishimura, K., Kubota, K., Tanabe, Y., and Takani, M. 1974. Studies on constituents of medicinal plants. XIII. Constituents of the pericarps of the capsules of Euscaphis japonica Pax. Chem. Pharm. Bull. 22:650–653.

    CAS  PubMed  Google Scholar 

  • Urones, J., De Pascual, T., Marcos, I., Fernández, R., Basabe, P., and Sexmero, J. 1987. Acetophenones and terpenoids from Senecio gallicus. Phytochemistry 26:1113–1115.

    Article  CAS  Google Scholar 

  • Wenkert, E., Baddeley, G. V., Burfitt, I. R., and Moreno, L. N. 1978. Carbon-13 Nuclear Magnetic Resonance spectroscopy of naturally-occurring substances LVII. Triterpenes related to lupane and hopane. Org. Magn. Reson. 11:337–342.

    Article  CAS  Google Scholar 

  • Wiersum, K. F. 1982. Tree gardening and taungya on Java: Examples of agroforestry techniques in the humid tropics. Agroforest Syst. 11:53–70.

    Article  Google Scholar 

  • Zdero, C., Ahmed, A. A., Bohlmann, F., and Mungai, G. M. 1990a. Diterpenes and sesquiterpenes xylosides from east African Conyza species. Phytochemistry 29:3167–3172.

    Article  CAS  Google Scholar 

  • Zdero, C., Jakupovic, J., and Bohlmann, F. 1990b. Diterpenes and other constituents from Pteronia species. Phytochemistry 29:1231–1245.

    Article  CAS  Google Scholar 

  • Zhang, H., Tan, G., Santarsiero, B., Mesecar, A., Hung, N., Manh, N., Doel, D., Pezzuto, J., and Fong, H. 2003. New sesquiterpenes from Lisea verticillata. J. Nat. Prod. 66:609–615.

    Article  CAS  PubMed  Google Scholar 

  • Zulueta, M. C. A., Tada, M., and Ragasa, C. Y. 1995. A diterpene from Bidens pilosa. Phytochemistry 38:1449–1450.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Ministerio de Ciencia y Tecnología, Spain (Ministerio de Ciencia e Innovación; Project No. AGL2008-04716/AGR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco A. Macías.

Electronic Supplementary Materials

Supporting Information. NMR spectra of compound 11 and effects of compounds 7–9 and 12 on the growth of standard target species are available at http://www

ESM 1

(DOC 1059 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macías, F.A., Lacret, R., Varela, R.M. et al. Isolation and Phytotoxicity of Terpenes from Tectona grandis . J Chem Ecol 36, 396–404 (2010). https://doi.org/10.1007/s10886-010-9769-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9769-3

Key Words

Navigation