Skip to main content
Log in

β-Cyclocitral, a Grazer Defence Signal Unique to the Cyanobacterium Microcystis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

β-Cyclocitral is often present in eutrophic waters and is a well known source of airborne and drinking water malodor, but its production and functional ecology are unresolved. This volatile organic compound (VOC) is derived from the catalytic breakdown of β-carotene, and evidence indicates that it is produced by the activation of a specific carotene oxygenase by all species of the bloom-forming cyanobacterium Microcystis. Previous work has shown that β-cyclocitral affects grazer behavior, but the nature of this interaction and its influence on predator-prey dynamics was unresolved. The present study combined analytical and behavioral studies to evaluate this interaction by using Microcystis NRC-1 and Daphnia magna. Results showed that β-cyclocitral was undetectable in live Microcystis cells, or present only at extremely low concentrations (2.6 amol /cell). In contrast, cell rupture activated a rapid carotene oxygenase reaction, which produced high amounts (77 ± 5.5 amol β-cyclocitral/cell), corresponding to a calculated maximum intracellular concentration of 2.2 mM. The behavioral response of Daphnia magna to β-cyclocitral was evaluated in a bbe© Daphnia toximeter, where β-cyclocitral treatments induced a marked increase in swimming velocity. Acclimation took place within a few minutes, when Daphnia returned to normal swimming velocity while still exposed to β-cyclocitral. The minimum VOC concentration (odor threshold) that elicited a significant grazer response was 750 nM β-cyclocitral, some 2,900 times lower than the per capita yield of a growing Microcystis cell after activation. Under natural conditions, initial grazer-related or other mode of cell rupture would lead to the development of a robust β-cyclocitral microzone around Microcystis colonies, thus acting as both a powerful repellent and signal of poor quality food to grazers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal, M. K., Zitt, A., Bagchi, D., Weckesser, J., Bagchi, S. N., and von Elert E. 2005. Characterization of proteases in guts of Daphnia magna and their inhibition by Microcystis aeruginosa PCC 7806. Environ. Toxicol. 20:314–322

    Article  CAS  PubMed  Google Scholar 

  • Benndorf, J., and HENNING, M. 1989. Daphnia and toxic blooms of Microcystis aeruginosa in Bautzen Reservoir (GDR). Int. Rev. ges. Hydrobiol. 74:233–248.

    Article  Google Scholar 

  • Birge, E. A. 1898. Plankton studies on Lake Mendota. II: The crustacea of the plankton from July, 1894, to December, 1896. Trans. Wis. Acad. Sci. Arts Lett. 11:274–451.

    Google Scholar 

  • Bister, B., Keller, S., Baumann, H. I., Nicholson, G., Weist, S., Jung, G., Süssmuth, R. D., and Jüttner, F. 2004. Cyanopeptolin 963A—a chymotrypsin inhibitor of Microcystis PCC 7806. J. Nat. Prod. 67:1755–1757.

    Article  CAS  PubMed  Google Scholar 

  • Blackburn, N., Fenchel, T., and Mitchell, J. 1998. Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282:2254–2256.

    Article  CAS  PubMed  Google Scholar 

  • Boland, W., Pohnert, G., and Meier, I. 1995. Pericyclic reactions in nature: spontaneous Cope rearrangement inactivates algae pheromones. Angew. Chem. Int. Ed. Engl. 34:1602–1604.

    Article  CAS  Google Scholar 

  • Burns, C. W. 1968. The relationship between body size of filter-feeding cladocera and the maximum size of particle ingested. Limnol. Oceanogr. 13:675–678.

    Article  Google Scholar 

  • DeMott, W. R. 1986. The role of taste in food selection by freshwater zooplankton. Oecologia 69:334–340.

    Article  Google Scholar 

  • DeMott, W. R., and Tessier, A. J. 2002. Stoichiometric constraints vs. algal defenses: testing mechanisms of zooplankton food limitation. Ecology 83:3426–3433.

    Article  Google Scholar 

  • DeMott, W. R., Zhang, Q. X., and Carmichael, W. W. 1991. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol. Oceanogr. 36:1346–1357.

    Article  CAS  Google Scholar 

  • Dokulil, M. T., and Teubner, K. 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438:1–12.

    Article  CAS  Google Scholar 

  • Durrer, M., Zimmermann, U., and Jüttner, F. 1999. Dissolved and particle-bound geosmin in a mesotrophic lake (Lake Zürich): Spatial and seasonal distribution and the effect of grazers. Water Res. 33:3628–3636.

    Article  CAS  Google Scholar 

  • Fink, P. 2007. Ecological functions of volatile organic compounds in aquatic systems. Mar. Freshw. Behav. Physiol. 40:155–168.

    Article  CAS  Google Scholar 

  • Friedman, M. M., and Strickler, J. R. 1975. Chemoreceptors and feeding in calanoid copepods (Arthropoda: Crustacea). Proc. Natl. Acad. Sci. USA 72:4185–4188.

    Article  CAS  PubMed  Google Scholar 

  • Fryer, G. 1991. Functional morphology and the adaptive radiation of the Daphniidae (Branchiopode: Anomopoda). Phil. Trans. R. Soc. London B. 331:1–99.

    Article  Google Scholar 

  • Fulton, R. S. III, and Paerl, H. W. 1987a. Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnol. Oceanogr. 32: 634–644.

    Article  Google Scholar 

  • Fulton, R. S. III, and Paerl, H. W. 1987b. Toxic and inhibitory effects of the blue-green alga Microcystis aeruginosa on herbivorous zooplankton. J. Plankton Res. 9:837–855.

    Article  Google Scholar 

  • Ghadouani, A., Pinel-Alloul, B., Plath, K., Codd, G. A., and Lampert, W. 2004. Effects of Microcystis aeruginosa and purified microcystin-LR on the feeding behavior of Daphnia pulicaria. Limnol. Oceanogr. 49:666–679.

    Article  Google Scholar 

  • Han J, McCarthy, E. D., Calvin, M., and Benn, M. H. (1968) Hydrocarbon constituents of the blue-green algae Nostoc muscorum, Anacystis nidulans, Phormidium luridum and Chlorogloea fritschii. J. Chem. Soc., C, 2785–2791.

  • Hansson, L. A., Gustafsson, S., Rengefors, K., and Bomark, L. 2007. Cyanobacterial chemical warfare affects zooplankton community composition. Freshw. Biol. 52:1290–1301.

    Article  CAS  Google Scholar 

  • Hartmann, H. J., and Kunkel, D. D. 1991. Mechanisms of food selection in Daphnia. Hydrobiologia 225:129–154.

    Article  Google Scholar 

  • Hyenstrand, P., Blomqvist, P., and Petterson, A. 1998. Factors determining cyanobacterial success in aquatic systems: a literature review. Ergeb. Limnol. 51:41–62.

    Google Scholar 

  • Ishida, K., Okita, Y., Matsuda, H., Okino, T., and Murakami, M. 1999. Aeruginosins, protease inhibitors from the cyanobacterium Microcystis aeruginosa. Tetrahedron 55:10971–10988.

    Article  CAS  Google Scholar 

  • Jarvis, A. C., Hart, R. C., and Combrink, S. 1987. Zooplankton feeding on size fractionated Microcystis colonies and Chlorella in a hypertrophic lake (Hartbeespoort Dam, South Africa): implications to resource utilization and zooplankton succession. J. Plankton Res. 9:1231–1249.

    Article  Google Scholar 

  • Jensen, K. H., Larsson, P., and Högstedt, G. 2001. Detecting food search in Daphnia in the field. Limnol. Oceanogr. 46:1013–1020.

    Article  Google Scholar 

  • Joosten, A. M. T. 2006. Flora of the Blue-Green Algae of the Netherlands. KNNV Publishing, Utrecht.

    Google Scholar 

  • Jungmann, D., Henning, M., and Jüttner, F. 1991. Are the same compounds in Microcystis responsible for toxicity to Daphnia and inhibition of its filtering rate? Int. Rev. ges. Hydrobiol. 76:47–56.

    Article  CAS  Google Scholar 

  • Jüttner, F. 1984. Characterization of Microcystis strains by alkyl sulfides and β-cyclocitral. Z. Naturforsch. 39c:867–871.

    Google Scholar 

  • Jüttner, F. 1999. Allelochemical control of natural photoautotrophic biofilms, pp. 43–50, in C. W. Keevil, A. Godfree, D. Holt, and C. Dow (eds.). Biofilms in the Aquatic Environment. Royal Society of Chemistry, Special Vol. 242, Cambridge, UK.

  • Jüttner, F. 2005. Evidence that polyunsaturated aldehydes of diatoms are repellents for pelagic crustacean grazers. Aquat. Ecol. 39: 271–282.

    Article  Google Scholar 

  • Jüttner, F., and Höflacher, B. 1985. Evidence of β-carotene 7,8 (7′,8′) oxygenase (β-cyclocitral, crocetindial generating) in Microcystis. Arch. Microbiol. 141:337–343.

    Article  Google Scholar 

  • Jüttner, F., and Lüthi, H. 2008. Topology and enhanced toxicity of bound microcystins in Microcystis PCC 7806. Toxicon 51:388–397.

    Article  PubMed  Google Scholar 

  • Kashiyama, K., Seki, T., Numata, H., and GOTO, S. G. 2009. Molecular characterization of visual pigments in Branchiopoda and the evolution of opsins in Arthropoda. Mol. Biol. Evol. 26:299–311.

    Article  CAS  PubMed  Google Scholar 

  • KIM, J. H., YOON, B. D., and OH, H. M. 2003. Rapid bioassay for microcystin toxicity based on feeding activity of Daphnia. Bull. Environ. Contam. Toxicol. 70:861–867.

  • Koski, M., Breteler, W. K., Schogt, N., Gonzales, S. and Jakobsen, H. H. 2006. Life-stage-specific differences in exploitation of food mixtures: diet mixing enhances copepod egg production but not juvenile development. J. Plankton Res. 28:919–936.

    Article  CAS  Google Scholar 

  • Kotak, B. G., Lam, A. K. Y., Prepas, E. E., Kenefick, S. L., and Hrudey, S. E. 1995. Variability of the hepatotoxin microcystin-LR in hypereutrophic drinking-water lakes. J. Phycol. 31:248–263.

    Article  CAS  Google Scholar 

  • Krogmann, D. W., Butalla, R., and Sprinkle, J. 1986. Blooms of cyanobacteria on the Potomac River. Plant Physiol. 80:667–671.

    Article  CAS  PubMed  Google Scholar 

  • Lampert, W. 1982. Further studies on the inhibitory effect of the toxic blue-green Microcystis aeruginosa on the filtering rate of zooplankton. Arch. Hydrobiol. 95:207–220.

    Google Scholar 

  • Lechelt, M., Blohm, W., Kirschneit, B., Pfeiffer, M., Gresens, E., Liley, J., Holz, R., Lüring. C., and Moldaenke, C. 2000. Monitoring of surface water by ultrasensitive Daphnia toximeter. Environ. Toxicol. 15:390–400.

    Article  CAS  Google Scholar 

  • Nielsen, S. L. 2006. Size-dependent growth rates in eukaryotic and prokaryotic algae exemplified by green algae and cyanobacteria: comparisons between unicells and colonial growth forms. J. Plankton Res. 28:489–498.

    Article  Google Scholar 

  • Ogawa, T., and Vernon, L. P. 1971. Increased content of cytochromes 554 and 562 in Anabaena variabilis cells grown in presence of diphenylamine. Biochim. Biophys. Acta 226:88–97.

    Article  CAS  PubMed  Google Scholar 

  • Portmann, C., Blom, J. F., Kaiser, M., Brun, R., Jüttner, F., and Gademann, K. 2008. Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: Heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evaluation. J. Nat. Prod. 71:1891–1896.

    Article  CAS  Google Scholar 

  • Poulet, S. A., and Marsot, P. 1978. Chemosensory grazing by marine calanoid copepods (Arthropoda: Crustacea). Science 200:1403–1405.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, C. 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Rinta-Kanto, J. M., Konopko, E., Debruyn, J., Bourbonniere, R., Boyer, G. L., and Wilhelm, S. 2009. Lake Erie Microcystis: Relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae 8:665–673.

    Article  CAS  Google Scholar 

  • Rohrlack, T., Henning, M., and Kohl, J. G. 1999a. Mechanisms of the inhibitory effect of the cyanobacterium Microcystis aeruginosa on Daphnia galeata’s ingestion rate. J. Plankton Res. 21:1489–1500.

    Article  Google Scholar 

  • Rohrlack, T., Dittmann, E., Henning, M., Börner, T., and Kohl, J. G. 1999b. Role of microcystins in poisoning and food ingestion inhibition of Daphnia galeata caused by the cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol. 65:737–739.

    CAS  PubMed  Google Scholar 

  • Rohrlack, T., Christoffersen, K., Hansen, P. E., Zhang, W., Czarnecki, O., Henning, M., Fastner, J., Erhard, M., Neilan, B. A., and Kaebernick, M. 2003. Isolation, characterization, and quantitative analysis of microviridin J, a new Microcystis metabolite toxic to Daphnia. J. Chem. Ecol. 29:1757–1770.

    Article  CAS  PubMed  Google Scholar 

  • Schwarzenberger, A., Zitt, A., Kroth, P., Müller, S., and von Elert, E. 2010. Gene expression and activity of digestive proteases in Daphnia: effects of cyanobacterial protease inhibitors. BMC Biology 10:6.

    Google Scholar 

  • Sorokin, J. I. 1968. The use of 14C in the study of nutrition of aquatic animals. Int. Ver. Theoret. Angew. Limnol. Mitteilungen 16:1–41.

    Google Scholar 

  • Stransky, H., and Hager, A. 1970. Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. IV. Cyanophyceae und Rhodophyceae. Arch. Mikrobiol. 72:84–96.

    Article  CAS  PubMed  Google Scholar 

  • Trubetskova, I. L., and Haney, J. F. 2006. Effects of differing concentrations of microcystin-producing Microcystis aeruginosa on growth, reproduction, survivorship and offspring of Daphnia magna. Arch. Hydrobiol. 167:533–546.

    Article  CAS  Google Scholar 

  • von Elert, E., Martin-Creuzberg, D., and Le Coz, J. R. 2003. Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata). Proc. R. Soc. Lond., Ser. B: Biol. Sci. 270:1209–1214.

    Google Scholar 

  • von Elert, E., Agrawal, M. K., Gebauer, C., Jaensch, H., Bauer, U., and Zitt, A. 2004. Protease activity in gut Daphnia magna: evidence for trypsin and chymotrypsin enzymes. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 137:287–296.

    Article  Google Scholar 

  • Watson, S. B. 2003. Cyanobacterial and eukaryotic algal odour compounds: signals or by-products? A review of their biological activity. Phycologia 42:332–350.

    Article  Google Scholar 

  • Watson, S. B., McCauley, E., and Downing, J. A. 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnol. Oceanogr.42:487–495.

    Article  Google Scholar 

  • Watson, S. B., Jüttner, F., and Köster, O. 2007. Daphnia behavioural responses to taste and odour compounds: ecological significance and application as an inline treatment plant monitoring tool. Water Sci. Technol. 55:23–31.

    CAS  PubMed  Google Scholar 

  • Watson, S. B., Ridal. J., and Boyer, G. L. 2008. Taste and odour and cyanobacterial toxins: impairment, prediction, and management in the Great Lakes. Can. J. Fish. Aquat. Sci. 65:1779–1796.

    Article  CAS  Google Scholar 

  • Welker, M., Maršálek, B., Šejnohová, L., and von DÖHREN, H. 2006. Detection and identification of oligopeptides in Microcystis (cyanobacteria) colonies: toward an understanding of metabolic diversity. Peptides 27:2090–2103.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, A. E., Sarnelle, O., and Tillmans, A. R. 2006. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: meta-analyses of laboratory experiments. Limnol. Oceanogr. 51:1915–1924.

    Article  Google Scholar 

Download references

Acknowledgements

F.J. thanks J. Pernthaler, Limnological Station, University of Zürich, for continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Jüttner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jüttner, F., Watson, S.B., von Elert, E. et al. β-Cyclocitral, a Grazer Defence Signal Unique to the Cyanobacterium Microcystis . J Chem Ecol 36, 1387–1397 (2010). https://doi.org/10.1007/s10886-010-9877-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9877-0

Key Words

Navigation