Skip to main content
Log in

Mechanisms of food selection in Daphnia

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A conceptual behavioural and mechanistic Holling-type model of food selection in Daphnia pulicaria is derived from SEM observations with animals feeding on mixtures of spherical-cylindrical diatoms, oblongate green algae, and filamentous cyanobacteria, as well as ultrafine particles. The algae used were Stephanodiscus hantzschii (<- 6 µm length), Monoraphidium setiforme (≥ 20 µm), and Oscillatoria aghardii (strands, >- 80 µm). Cell (strand) selection can occur at any or all of three stages: (i) interception from the feeding currents, (ii) collection and channeling to the food groove, and (iii) compaction and transport to the mouth. During each stage, given equal initial cell densities, elongate cells are more likely to escape collection than spherical cells and are more likely to be rejected. In addition, filaments require increased handling time at stages (ii) and (iii) and promote entanglement with limb 5 and the postabdominal claw. Food is collected primarily with the aid of limbs 3 (and 4), but limbs 1 and 2 also intervene. Neither the leaky sieve hypothesis alone nor any other single-process hypothesis explains the observations on examined in corpore positions, morphology, and derived movements of the feeding limbs. Attachment and mucus appear to be important for the ingestion of bacteria and ultrafine particles.

The model is consistent with many experimental results of differential feeding by Daphnia pulicaria on mixtures of variously shaped algae and other observations on Daphnia feeding behaviour. The paradigm of invariate, nonselective feeding by Daphnia is rejected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, D. E., 1971. Ingestion, assimilation, survival, and reproduction by Daphnia pulex fed seven species of bluegreen algae. Limnol. Oceanogr. 16: 906–920.

    Google Scholar 

  • Bern, L., 1990. Postcapture particle size selection by Daphnia cucullata (Cladocera). Limnol. Oceanogr. 35: 923–926.

    Google Scholar 

  • Bogdan, K. G. & D. C. McNaught, 1975. Selective feeding by Diaptomus and Daphnia. Verh. int. Ver. Limnol. 19: 2935–2942.

    Google Scholar 

  • Boyd, C. M., 1976. Selection of particle sizes by filter feeding copepods: a plea for reason. Limnol. Oceanogr. 21: 175–180.

    Google Scholar 

  • Brendelberger, H., 1985. Filter mesh-size and retention efficiency for small particles: comparative studies with Cladocera. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 135–146.

    Google Scholar 

  • Brendelberger, H. & W. Geller, 1985. Variability of filter structures in eight Daphnia species: mesh sizes and filtering areas. J. Plankton Res. 7: 473–486.

    Google Scholar 

  • Brendelberger, H., M. Herbeck, H. Land & W. Lampert, 1986. Daphnia's filters are not solid walls. Arch. Hydrobiol. 107: 197–202.

    Google Scholar 

  • Burns, C. W., 1968a. Direct observations of mechanisms regulating feeding behavior of Daphnia in lakewater. Int. Revue ges. Hydrobiol. 53: 83–100.

    Google Scholar 

  • Burns, C. W., 1968b. The relationship between body size of filter-feeding Cladocera and the maximum size of particles ingested. Limnol. Oceanogr. 13: 675–678.

    Google Scholar 

  • Burns, C. W. & J. B. Gilbert, 1986. Direct observations of the mechanisms of interference between Daphnia and Keratella cochlearis. Limnol. Oceanogr. 31: 859–866.

    Google Scholar 

  • Cannon, H. G., 1933. On the feeding mechanism of Branchipoda.Phil. Trans. r. Soc., Lond., Ser. B. 222: 267–352.

    Google Scholar 

  • DeMott, W. R., 1982. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnol. Oceanogr. 27: 518–527.

    Google Scholar 

  • DeMott, W. R., 1985. Relations between filter mesh-size, feeding mode, and capture efficiency for cladocerans feeding on ultrafine particles. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 125–134.

    Google Scholar 

  • DeMott, W. R., 1988. Discrimination between algae and artificial particles by freshwater and marine copepods. Limnol. Oceanogr. 33: 397–408.

    Google Scholar 

  • DeMott, W. R., 1989. Optimal foraging theory as a predictor of chemically mediated food selection by suspension feeding copepods. Limnol. Oceanogr. 34: 140–154.

    Google Scholar 

  • DeMott, W. R., 1990. Retention efficiency, perceptual bias, and active choice as mechanisms of food selection by suspension feeding zooplankton. In R. N. Hughes (ed.), Behavioural Mechanisms of Food Selection. NATO ASI Series A: Life Sciences. Springer Verlag, Heidelberg; New York: 569–594.

    Google Scholar 

  • Edmondson, W. T. & A. H. Litt, 1982. Daphnia in Lake Washington. Limnol. Oceanogr. 27: 272–293.

    Google Scholar 

  • Eriksson, S., 1934. Studien über die Fangapparate der Branchiopoden. Zool. Bidr. Upps. 15: 21–287.

    Google Scholar 

  • Flood, P., 1973. A simple technique for the prevention of loss or damage to planktonic specimens during preparation for transmission and scanning electron microscopy. Sarsia 54: 67–74.

    Google Scholar 

  • Fryer, G., 1968. Evolution and adaptive radiation in the Chydoridae (Crustacea: Cladocera): a study in comparative functional morphology and ecology. Phil. Trans. r. Soc., Lond., Ser. B. 254: 221–385.

    Google Scholar 

  • Fryer, G., 1987. The feeding mechanisms of the Daphniidae (Crustacea: Cladocera): recent suggestions and neglected considerations. J. Plankton Res. 9: 419–432.

    Google Scholar 

  • Fulton, R. S., 1988. Grazing on filamentous algae by herbivorous zooplankton. Freshwat. Biol. 20: 263–271.

    Google Scholar 

  • Ganf, G. G. & R. J. Shiel, 1985a. Feeding behaviour and limb morphology of two cladocerans with small intersetular distances. Aust. J. mar. Freshwat. Res. 34: 49–84.

    Google Scholar 

  • Ganf, G. G. & R. J. Shiel, 1985b. Particle capture by Daphnia carinata. Aust. J. mar. Freshwat. Res. 34: 371–381.

    Google Scholar 

  • Geller, W., 1975. Die Nahrungsaufnahme von Daphnia pulex in Abhängigkeit von der Futterkonzentration, der Temperatur, der Körpergrösse und dem Hungerzustand der Tiere. Arch. Hydrobiol. 48: 47–107.

    Google Scholar 

  • Geller, W. & C. Knisely, 1988. Drag forces and energetic costs in Daphnia filter-feeding. (Abstract). Verh. int. Ver. Limnol. 23: 20–61.

    Google Scholar 

  • Geller, W. & M. Müller, 1981. The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia 49: 316–321.

    Google Scholar 

  • Gerritsen, J. & K. G. Porter, 1982. The role of surface chemistry in filter feeding by zooplankton. Science 216: 1225–1227.

    Google Scholar 

  • Gerritsen, J., K. G. Porter & J. R. Strickler, 1988. Not by sieving alone: observations of suspension feeding in Daphnia. Bull. mar. Sci. 43: 366–367.

    Google Scholar 

  • Glagolev, S. M.,1983. Morphology of thoracic limbs of some species of the genus Daphnia and its importance for the systematics of the genus [in russian]. In N. N. Smirnov (ed.), Biocenosy mezotrofnogo ozera Glubokogo. Moscow: 61–93.

  • Gliwicz, Z. M., 1980. Filtering rates, food size selection, and feeding rates in Cladocerans — another aspect of interspecific competition in filter-feeding zooplankton. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover (N.H.); Lond.: 282–291.

    Google Scholar 

  • Gliwicz, Z. M. & E. Siedlar, 1980. Food size limitation and algae interfering with food collection in Daphnia. Arch. Hydrobiol. 88: 155–177.

    Google Scholar 

  • Gophen, M. & W. Geller, 1984. Filter mesh size and food particle uptake by Daphnia. Oecologia 64: 408–412.

    Google Scholar 

  • Hadas, B. Z., Y. K. Cavan, Y. Kott & U. Bachrach, 1982. Preferential feeding behavior of Daphnia magna. Hydrobiologia 89: 49–52.

    Google Scholar 

  • Hartmann, H. J., 1985. Feeding of Daphnia pulicaria and Diaptomus ashlandi on mixtures of unicellular and filamentous algae. Verh. int. Ver. Limnol. 22: 3178–3183.

    Google Scholar 

  • Hartmann, H. J., 1987. Effects of differential grazing and phosphorus recycling on phytoplankton community dynamics. Ph.D. Thesis, Univ. of Washington, Seattle, WA, USA, 326 pp.

    Google Scholar 

  • Hawkins, P. & W. Lampert, 1989. The effect of Daphnia body size on filtering rate inhibition in the presence of a filamentous cyanobacterium. Limnol. Oceanogr. 34: 1084–1089.

    Google Scholar 

  • Hessen, D. O. & O. Nordby, 1988. Limb morphology and the process of particle capture in the cladoceran Holopedium gibberum Zaddach. Verh. int. Ver. Limnol. 23: 2038–2044.

    Google Scholar 

  • Holling, C. S., 1966. The functional response of invertebrate predators to prey density. Mem. entom. Soc. Can. 48: 1–86.

    Google Scholar 

  • Holm, N. P., G. G. Ganf & J. Shapiro, 1983. Feeding and assimilation rates of Daphnia pulex fed Aphanizomenon flos-aquae. Limnol. Oceanogr. 28: 677–687.

    Google Scholar 

  • Infante, A. & W. T. Edmondson, 1985. Edible phytoplankton and herbivorous zooplankton in Lake Washington. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 161–171.

    Google Scholar 

  • Infante, A. & A. H. Litt, 1985. Differences between two species of Daphnia in the use of 10 species of algae in Lake Washington. Limnol. Oceanogr. 30: 1053–1059.

    Google Scholar 

  • Kankaala, P., 1988. The relative importance of algae and bacteria as food for Daphnia longispina (Cladocera) in a polyhumic lake. Freshwat. Biol. 19: 285–296.

    Google Scholar 

  • Knisely, K. & W. Geller, 1986. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia 69: 86–94.

    Google Scholar 

  • Kořínek, V. & J. Machácek, 1980. Filtering structures of Cladocera and their ecological significance. I. Daphnia pulicaria. Věst. čs. Společ. zool. 44: 213–218.

    Google Scholar 

  • Kořínek, V., B. Krepelová-Machácková & J. Machácek, 1986. Filtering structures of Cladocera and their ecological significance. II. Relation between the concentration of seston and size of filtering combs in some species of the genera Daphnia and Ceriodaphnia. Věst. čs. Společ. zool. 50: 244–258.

    Google Scholar 

  • Koza, V. & V. Kořínek, 1985. Adaptability of the filtration screen in Daphnia: another answer to the selective pressure of the environment. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 193–198.

    Google Scholar 

  • Lair, N., 1990. Effects of invertebrate predation on the seasonal succession of a zooplankton community: a two year study in Lake Aydat, France. Hydrobiologia 198: 1–12.

    Google Scholar 

  • Lampert, W., 1987. Feeding and nutrition in Daphnia. Mem. Istit. ital. Idrobiol. 45: 143–192.

    Google Scholar 

  • Lampert, W., W. Fleckner, H. Rai & B. E. Taylor, 1986. Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnol. Oceanogr. 31: 478–490.

    Google Scholar 

  • Marvalin, O. & S. Lazarek, 1988. Improved method for determining bacterial filtration in zooplankton. Appl. envir. Microbiol. 54: 2149–2151.

    Google Scholar 

  • Marvalin, O., L. Aleya, H. J. Hartmann & S. Lazarek, 1989. Coupling of the seasonal patterns of bacterioplankton and phytoplankton in a eutrophic lake. Can. J. Microbiol. 35: 706–712.

    Google Scholar 

  • McMahon, J. W. & F. H. Rigler, 1963. Mechanisms regulating the feeding rate of Daphnia magna Strauss. Can. J. Zool. 41: 321–332.

    Google Scholar 

  • Meise, C. J., W. R. Munns Jr. & N. G. Hairston Jr., 1985. An analysis of the feeding behavior of Daphnia pulex. Limnol. Oceanogr. 30: 862–870.

    Google Scholar 

  • Murphy, J. S., 1970. A general method for the monoxenic cultivation of the Daphnidae. Biol. Bull. 139: 321–332.

    Google Scholar 

  • Nygaard, G., 1977. New or interesting plankton algae. The Royal danish Academy of Sciences and Letters, Botany, Zoology and General Biology. Publn 21: 52–107.

    Google Scholar 

  • Peterson, B. J., J. E. Hobbie & J. F. Haney, 1978. Daphnia grazing on natural bacteria. Limnol. Oceanogr. 23: 1039–1044.

    Google Scholar 

  • Philippova, T. G. & A. L. Postnov, 1988. The effect of food quantity on feeding and metabolic expenditure in Cladocera. Int. Revue ges. Hydrobiol. 73: 601–615.

    Google Scholar 

  • Porter, K. G. & R. McDonough, 1984. The energetic cost of response to blue-green algal filaments by cladocerans. Limnol. Oceanogr. 29: 365–369.

    Google Scholar 

  • Porter, K. G. & J. D. Orcutt Jr., 1980. Nutritional adequacy, manageability, and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover (N.H.); Lond.: 268–281.

    Google Scholar 

  • Porter, K. G., Y. S. Feig & E. F. Vetter, 1983. Morphology, flow regimes, and filtering rates of Daphnia, Ceriodaphnia, and Bosmina fed natural bacteria. Oecologia 58: 156–163.

    Google Scholar 

  • Porter, K. G., J. Gerritsen & J. D. Orcutt Jr., 1982. The effect of food concentration on swimming patterns, feeding behavior, ingestion, assimilation, and respiration by Daphnia. Limnol. Oceanogr. 27: 935–949.

    Google Scholar 

  • Price, H. J., 1988. Feeding mechanisms in marine and freshwater zooplankton. Bull. mar. Sci. 43: 327–343.

    Google Scholar 

  • Price, H. J. & G.-A. Paffenhöfer, 1984. Effects of feeding experience in the copepod Eucalanus pileatus: a cinematographic study. Mar. Biol. 84: 35–40.

    Google Scholar 

  • Ringelberg, J., 1988. Clearance and ingestion in Daphnia during the first half hour of feeding after starvation. Verh. int. Ver. Limnol. 23: 2063–2066.

    Google Scholar 

  • Rubenstein, D. I. & M. A. R. Koehl, 1977. The mechanisms of filter feeding: some theoretical considerations. Am. Nat. 111: 981–984.

    Google Scholar 

  • Scavia, D., G. L. Fahnenstiel, J. A. Davis & R. G. Kreis Jr., 1984. Small-scale nutrient patchiness: some consequences and a new encounter mechanism. Limnol. Oceanogr. 29: 785–793.

    Google Scholar 

  • Schoenberg, S. A. & A. E. MacCubbin, 1985. Relative feeding rates on free and particle-bound bacteria by freshwater macrozooplankton. Limnol. Oceanogr. 30: 1084–1090.

    Google Scholar 

  • Shiel, R. J., G. G. Ganf & J. Gormley, 1988. Particle capture by Daphnia: evidence from high-speed microcinematography. (Abstract). Verh. int. Ver. Limnol. 23: 2060.

    Google Scholar 

  • Smirnov, N. N., 1971. Morpho-functional grounds of mode of life of Cladocera. V. Morphology and adaptive modifications of trunk limbs of Anomopoda. Hydrobiologia 37: 317–345.

    Google Scholar 

  • Storch, O., 1924. Morphologie und Physiologie des Fangapparates der Daphniden. Ergebn. Fortschr. Zool. 6: 125–234.

    Google Scholar 

  • Taub, F. B., 1985. Toward interlaboratory (round-robin)testing of a standardized aquatic microcosm. In J. Cairns, Jr, (ed.), Multispecies Toxicity Testing. Pergamon Press, Oxford, U.K.: 165–186.

    Google Scholar 

  • Taub, F. B. & A. N. Dollar, 1964. A Chlorella-Daphnia food-chain study: the design of a compatible chemically defined culture medium. Limnol. Oceanogr. 9: 61–74.

    Google Scholar 

  • Watts, E. & M. Petri, 1981. A scanning electron microscope study of the thoracic appendages of Daphnia magna Strauss. J. nat. Hist., Lond. 15: 464–473.

    Google Scholar 

  • Watts, E. & S. Young, 1980. Components of Daphnia feeding behavior. J. Plankton Res. 2: 203–212.

    Google Scholar 

  • Webster, K. E. & R. H. Peters, 1978. Some size-dependent inhibitions of larger cladoceran filterers in filamentous suspensions. Limnol. Oceanogr. 23: 1238–1245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, H.J., Kunkel, D.D. Mechanisms of food selection in Daphnia . Hydrobiologia 225, 129–154 (1991). https://doi.org/10.1007/BF00028392

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00028392

Key words

Navigation