Skip to main content
Log in

Neurophysiological Effects of Naturally Occurring Defensive Compounds on the Freshwater Snail Planorbis corneus: Comparison with Effects in Insects

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The essential oil constituents citral, geraniol, and eugenol have toxic or repellent properties that are utilized by a variety of organisms to deter natural enemies. Their mechanism of action is unknown, but some essential oils such as eugenol are claimed to act on insects by specific binding to octopamine receptors. We studied their effects on the isolated buccal ganglia of Planorbis corneus, having demonstrated that they caused cessation of feeding and death when added to the aquarium water (approximately 5 × 10−4 mol l−1). They abolished spike activity at 2 × 10−3 mol l−1 but at lower doses (threshold 5 × 10−5 mol l−1) they resembled octopamine in eliciting burst firing indicative of the fictive feeding sequence. However, the octopamine antagonists phentolamine (10−5 mol l−1), yohimbine (10−4 mol l−1; which blocked hyperpolarizing octopamine responses), and metoclopramide (10−4 mol l−1; which blocked depolarization) had no effect on any of the responses to the oils. The oils produced incomplete block of excitatory and inhibitory responses to octopamine even at high doses (10−3 mol l−1), and they had similar effects on responses to dopamine and acetylcholine. The oils (10−5–2 × 10−3 mol l−1) all increased the frequency of contractions of the isolated esophagus and progressively reduced their amplitude. The effects were similar to those of octopamine but were not blocked by phentolamine, metoclopramide, or prolonged exposure of the esophagus to octopamine. The results suggest a variety of actions that could contribute to toxic effects in molluscs, but there was no evidence for specific actions on octopamine receptors, either as agonists or antagonists. Evidence is presented that nonspecific depolarization produces their octopamine-like actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amin, G., Salehi Sourmaghi, M. H., Zahedi, M., Khanavi, M., and Samadi, N. 2005. Essential oil composition and antimicrobial activity of Oliveria decumbens. Fitoterapia 76:704–707.

    Article  PubMed  CAS  Google Scholar 

  • Arshavsky, Y., Deliagina, T. G., Meizerov, E. S., Orlovsky, G. N., and Panchin, Y. 1988. Control of feeding movements in the freshwater snail Planorbis corneus. I. Rhythmical neurons of buccal ganglia. Exp. Brain Res. 70:310–322.

    Article  PubMed  Google Scholar 

  • Benjamin, P. R. 1983. Gastropod feeding: behavioural and neural analysis of a complex multicomponent system, pp. 159–193, in A. Roberts, and B. Roberts (eds.). Neural Origin of Rhythmic Movements. Cambridge University Press, Cambridge.

    Google Scholar 

  • Berry, M. S., and Cottrell, G. A. 1975. Excitatory, inhibitory and biphasic synaptic potentials mediated by an identified dopamine-containing neuron. J. Physiol. Lond. 244:589–612.

    PubMed  CAS  Google Scholar 

  • Bhat, S. V., Nagasampagi, B. A., and Sivakumar, M. 2005. Chemistry of Natural Products. Narosa Publishing House, New Delhi.

    Google Scholar 

  • Brodin, P., and Røed, A. 1984. Effects of eugenol on rat phrenic nerve and phrenic nerve-diaphragm preparations. Arch. Oral Biol. 29:611–615.

    Article  PubMed  CAS  Google Scholar 

  • Chadha, M. S., Eisner, T., Monro, A., and Meinwald, J. 1962. Defense mechanisms of arthropods-VII. Citronellal and citral in the mandibular gland secretion of the ant Acanthomyops claviger (Roger). J. Insect Physiol. 8:175–176.

    Article  Google Scholar 

  • Cheng, S.-S., Chang, H.-T., Chang, S.-T., Tsai, K.-H., and Chen, W.-J. 2003. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Biores. Technol. 89:99–102.

    Article  CAS  Google Scholar 

  • Clark, T. E., and Appleton, C. C. 1997. The molluscicidal activity of Apodytes dimidiata E. Meyer ex Arn (Icacinaceae), Gardenia thunbergia L.f. (Rubiaceae) and Warburgia salutaris (Bertol. F.) Chiov. (Cannelaceae), three South African plants. J. Ethnopharm. 56:15–30.

    Article  CAS  Google Scholar 

  • Coats, J. R., Karr, L. L., and Drewes, C. D. 1991. Toxicity and neurotoxic effects of monoterpenoids in insects and earthworms, pp. 305–316, in P. A. Hedin (ed.). Naturally Occurring Pest Bioregulators. ACS Symposium Series 449. American Chemical Society, Washington DC.

    Google Scholar 

  • De Souza, C. P., De Oliveira, A. B., Araujo, N., and Katz, N. 1991. Effects of eugenol and derivatives on Biomphalaria glabrata. Rev. Bras. Biol. 51:295–299.

    PubMed  CAS  Google Scholar 

  • Dyrynda, P. E. J. 1986. Defensive strategies of modular organisms. Phil. Trans. R. Soc. Lond. B 313:227–243.

    Article  Google Scholar 

  • Elliott, C. J. H., and Vehovszky, Á. 2001. Octopamine is not just for arthropods. Physiol. News 45:17–19.

    Google Scholar 

  • Enan, E. E. 2001. Insecticidal activity of essential oils: octopaminergic sites of action. Comp. Biochem. Physiol. C 130:325–337.

    CAS  Google Scholar 

  • Enan, E. E. 2005. Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Arch. Insect Biochem. Physiol. 59:161–171.

    Article  PubMed  CAS  Google Scholar 

  • Evans, P. D., and Robb, S. 1993. Octopamine receptor subtypes and their modes of action. Neurochem. Res. 18:869–874.

    Article  PubMed  CAS  Google Scholar 

  • Evans, P. D., and Maqueira, B. 2005. Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invertebr. Neurosci. 5:111–118.

    Article  CAS  Google Scholar 

  • Evans, P. D., Robb, S., Cheek, T. R., Reale, V., Hannan, F. L., Swales, L. S., Hall, M., and Midgley, J. M. 1995. Agonist-specific coupling of G-protein coupled receptors to second messenger systems. Prog. Brain Res. 106:259–268.

    Article  PubMed  CAS  Google Scholar 

  • Finney, D. J. 1952. Probit Analysis. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ghelardini, C., Galeotti, N., Salvatore, G., and Mawwanti, G. 1999. Local anaesthetic activity of the essential oil of Lavandula angustifolia. Planta Medica 65:700–703.

    Article  PubMed  CAS  Google Scholar 

  • Hiripi, L., Vehovszky, Á., Juhos, S., and Elekes, K. 1998. An octopaminergic system in the CNS of the snails, Lymnaea stagnalis and Helix pomatia. Phil. Trans. R. Soc. Lond. B 353:1621–1629.

    Article  CAS  Google Scholar 

  • Huang, Y., Ho, S. H., Lee, H. -C., and Yap, Y. -L. 2002. Insecticidal properties of eugenol, isoeugenol and methyleugenol and their effects on nutrition of Sitophilus zeamais Motsch. (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Stored Products Res. 38:403–412.

    Article  CAS  Google Scholar 

  • Isman, M. B. 2000. Plant essential oils for pest and disease management. Crop Prot. 19:603–608.

    Article  CAS  Google Scholar 

  • Katerinopoulos, H. E., Pagona, G., Afratis, A., and Stratigakis, N. 2005. Composition and insect attracting activity of the essential oil of Rosmarinus officinalis. J. Chem. Ecol. 31:111–122.

    Article  PubMed  CAS  Google Scholar 

  • Kostyukovsky, M., Rafaeli, A., Gileadi, C., Demchenko, N., and Shaaya, E. 2002. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag. Sci. 58:1101–1106.

    Article  PubMed  CAS  Google Scholar 

  • Lahlou, M., and Berrada, R. 2001. Potential of essential oils in schistosomiasis control in Morocco. Int. J. Aroma. 11:87–96.

    Article  Google Scholar 

  • Mikich, S. B., Bianconi, G. V., Maia, B. H. L. N. S., and Teixeira, S. D. 2003. Attraction of the fruit-eating bat Carollia perspicillata to Piper gaudichaudianum essential oil. J. Chem. Ecol. 29:2379–2383.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, Y., Miyamoto, M., Murakami, A., Ohigashi, H., Osawa, T., and Uchida, K. 2003. A phase II detoxification enzyme inducer from lemongrass: identification of citral and involvement of electrophilic reaction in the enzyme induction. Biochem. Biophys. Res. Commun. 302:593–600.

    Article  PubMed  CAS  Google Scholar 

  • Ngoh, S. P., Choo, L. E. W., Pang, F. Y., Huang, Y., Kini, M. R., and Ho, S. H. 1998. Insecticidal and repellent properties of nine volatile constituents of essential oils against the American cockroach, Periplaneta americana. Pestic. Sci. 54:261–268.

    Article  CAS  Google Scholar 

  • O’reilly-Wapstra, J. M., Potts, B. M., Mcarthur, C., Davies, N. W., and Tilyard, P. 2005. Inheritance of resistance to mammalian herbivores and of plant defensive chemistry in a Eucalyptus species. J. Chem. Ecol. 31:519–537.

    Article  PubMed  CAS  Google Scholar 

  • Pavela, R. 2005. Insecticidal activity of some essential oils against larvae of Spodoptera littoralis. Fitoterapia 76:691–696.

    Article  PubMed  CAS  Google Scholar 

  • Price, D. N., and Berry, M. S. 2006. Comparison of effects of octopamine and insecticidal essential oils on activity in the nerve cord, foregut, and dorsal unpaired median neurons of cockroaches. J. Insect Physiol. 52:309–319.

    Article  PubMed  CAS  Google Scholar 

  • Singh, S., Singh, V. K., and Singh, D. K. 1997. Molluscicidal activity of some common spice plants. Biol. Agric. Hortic. 14:237–249.

    Google Scholar 

  • Szabadics, J., and Erdélyi, L. 2000. Pre- and postsynaptic effects of eugenol and related compounds on Helix pomatia L. Acta Biol. Hung. 51:265–273.

    PubMed  CAS  Google Scholar 

  • Vasudevan, P., Kashyap, S., and Sharma, S. 1997. Tagetes: a multipurpose plant. Biores. Tech. 62:29–35.

    Article  CAS  Google Scholar 

  • Vehovszky, Á., and Elliott, C. J. H. 2002. Heterosynaptic modulation by the octopaminergic OC interneurons increases the synaptic outputs of protraction phase interneurons (SO, N1L) in the feeding system of Lymnaea stagnalis. Neurosci. 115:483–494.

    Article  CAS  Google Scholar 

  • Vehovszky, Á., Elliott, C. J. H., Voronezhskaya, E. E., Hiripi, L., and Elekes, K. 1998. Octopamine: a new feeding modulator in Lymnaea. Phil. Trans. R. Soc. Lond. B 353:1631–1643.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DNP was supported by a studentship from the Department of Biological Sciences, School of the Environment and Society, Swansea University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. Price.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, D.N., Berry, M.S. Neurophysiological Effects of Naturally Occurring Defensive Compounds on the Freshwater Snail Planorbis corneus: Comparison with Effects in Insects. J Chem Ecol 34, 994–1004 (2008). https://doi.org/10.1007/s10886-008-9511-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9511-6

Keywords

Navigation