Skip to main content
Log in

Active Space of Pheromone Plume and its Relationship to Effective Attraction Radius in Applied Models

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The release rate of a semiochemical lure that attracts flying insects has a specific effective attraction radius (EAR) that corresponds to the lure’s orientation response strength. EAR is defined as the radius of a passive sphere that intercepts the same number of insects as a semiochemical-baited trap. It is estimated by calculating the ratio of trap catches in the field in baited and unbaited traps and the interception area of the unbaited trap. EAR serves as a standardized method for comparing the attractive strengths of lures that is independent of population density. In two-dimensional encounter rate models that are used to describe insect mass trapping and mating disruption, a circular EAR (EARc) describes a key parameter that affects catch or influence by pheromone in the models. However, the spherical EAR, as measured in the field, should be transformed to an EARc for appropriate predictions in such models. The EARc is calculated as (π/2EAR2)/F L, where F L is the effective thickness of the flight layer where the insect searches. F L was estimated from catches of insects (42 species in the orders Coleoptera, Lepidoptera, Diptera, Hemiptera, and Thysanoptera) on traps at various heights as reported in the literature. The EARc was proposed further as a simple but equivalent alternative to simulations of highly complex active-space plumes with variable response surfaces that have proven exceedingly difficult to quantify in nature. This hypothesis was explored in simulations where flying insects, represented as coordinate points, moved about in a correlated random walk in an area that contained a pheromone plume, represented as a sector of active space composed of a capture probability surface of variable complexity. In this plume model, catch was monitored at a constant density of flying insects and then compared to simulations in which a circular EARc was enlarged until an equivalent rate was caught. This demonstrated that there is a circular EARc, where all insects that enter are caught, which corresponds in catch effect to any plume. Thus, the EARc, based on the field-observed EAR, can be used in encounter rate models to develop effective control programs based on mass trapping and/or mating disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkinson, T. H., Foltz, J. L., and Connor, M. D. 1988. Flight patterns of phloem- and wood-boring Coleoptera (Scolytidae, Platypodidae, Curculionidae, Buprestidae, Cerambycidae) in a north Florida slash pine plantation. Environ. Entomol. 17:259–265.

    Google Scholar 

  • Baker, T. C., and Roelofs, W. L. 1981. Initiation and termination of oriental fruit moth male response to pheromone concentrations in the field. Environ. Entomol. 10:211–218.

    Google Scholar 

  • Baker, T. C., Hansson, B. S., Löfstedt, C., and Löfqvist, J. 1989. Adaptation of male moth antennal neurons in a pheromone plume is associated with cessation of pheromone-mediated flight. Chem. Senses 14:439–448.

    Article  CAS  Google Scholar 

  • Baker, T. C., Fadamiro, H., and Cossé, A. A. 1998. Fine-grained resolution of closely spaced odor strands by flying male moths. Nature 393:530.

    Article  CAS  Google Scholar 

  • Bartell, R. J. 1982. Mechanisms of communication disruption by pheromones in control of Lepidoptera: a review. Physiol. Entomol. 7:353–364.

    Article  CAS  Google Scholar 

  • Bartell, R. J., and Roelofs, W. L. 1973. Inhibition of sexual response in males of the moth Argyrotaenia velutinana by brief exposures to synthetic pheromone or its geometric isomer. J. Insect Physiol. 19:655–661.

    Article  CAS  Google Scholar 

  • Boiteau, G., Bousquet, Y., and Osborn, W. 2000. Vertical and temporal distribution of Carabidae and Elateridae in flight above an agricultural landscape. Environ. Entomol. 29:1157–1163.

    Google Scholar 

  • Bossert, W. H., and Wilson, E. O. 1963. The analysis of olfactory communication among animals. J. Theor. Biol. 5:443–469.

    Article  PubMed  CAS  Google Scholar 

  • Branco, M., Jactel, H., Franco, J. C., and Mendel, Z. 2006. Modelling response of insect trap captures to pheromone dose. Ecol. Model. 197:247–257.

    Article  Google Scholar 

  • Byers, J. A. 1987. Interactions of pheromone component odor plumes of western pine beetle. J. Chem. Ecol. 13:2143–2157.

    Article  CAS  Google Scholar 

  • Byers, J. A. 1991. Simulation of mate-finding behaviour of pine shoot beetles, Tomicus piniperda. Anim. Behav. 41:649–660.

    Article  Google Scholar 

  • Byers, J. A. 1993a. Simulation and equation models of insect population control by pheromone-baited traps. J. Chem. Ecol. 19:1939–1956.

    Article  CAS  Google Scholar 

  • Byers, J. A. 1993b. Orientation of bark beetles Pityogenes chalcographus and Ips typographus to pheromone-baited puddle traps placed in grids: A new trap for control of scolytids. J. Chem. Ecol. 19:2297–2316.

    Article  CAS  Google Scholar 

  • Byers, J. A. 1996a. An encounter rate model for bark beetle populations searching at random for susceptible host trees. Ecol. Model. 91:57–66.

    Article  Google Scholar 

  • Byers, J. A. 1996b. Temporal clumping of bark beetle arrival at pheromone traps: Modeling anemotaxis in chaotic plumes. J. Chem. Ecol. 22:2133–2155.

    Article  CAS  Google Scholar 

  • Byers, J. A. 1999. Effects of attraction radius and flight paths on catch of scolytid beetles dispersing outward through rings of pheromone traps. J. Chem. Ecol. 25:985–1005.

    Article  CAS  Google Scholar 

  • Byers, J. A. 2001. Correlated random walk equations of animal dispersal resolved by simulation. Ecology 82:1680–1690.

    Article  Google Scholar 

  • Byers, J. A. 2007. Simulation of mating disruption and mass trapping with competitive attraction and camouflage. Environ. Entomol. 36:1328–1338.

    Article  PubMed  Google Scholar 

  • Byers, J. A., Anderbrant, O., and Löfqvist, J. 1989. Effective attraction radius: A method for comparing species attractants and determining densities of flying insects. J. Chem. Ecol. 15:749–765.

    Article  Google Scholar 

  • Byers, J. A., Lanne, B. S., Löfqvist, J., Schlyter, F., and Bergström, G. 1985. Olfactory recognition of host-tree susceptibility by pine shoot beetles. Naturwissenschaften 72:324–326.

    Article  CAS  Google Scholar 

  • Cardé, R. T. 1990. Principles of mating disruption, pp. 47–71, in R. L. Ridgway, and R. M. Silverstein (eds.). Behavior-Modifying Chemicals for Pest Management: Applications of Pheromones and other Attractants. Marcel Dekker, New York.

    Google Scholar 

  • Cardé, R. T., and Minks, A. K. 1995. Control of moth pests by mating disruption: successes and constraints. Annu. Rev. Entomol. 40:559–585.

    Article  Google Scholar 

  • Chandler, L. D. 1985. Flight activity of Liriomyza trifolii (Diptera: Agromyzidae) in relationship to placement of yellow traps in bell pepper. J. Econ. Entomol. 78:825–828.

    Google Scholar 

  • El-Sayed, A. M. 2007. The Pherobase: database of insect pheromones and semiochemicals. (http://www.pherobase.com).

  • El-Sayed, A. M., Suckling, D. M., Wearing, C. H., and Byers, J. A. 2006. Potential of mass trapping for long-term pest management and eradication of invasive species. J. Econ. Entomol. 99:1550–1564.

    PubMed  CAS  Google Scholar 

  • Elkinton, J. S., and Cardé, R. T. 1984. Odor dispersion, pp. 73–91, in W. J. Bell, and R. T. Cardé (eds.). Chemical Ecology of Insects. Sinauer Associates, Sunderland.

    Google Scholar 

  • Elkinton, J. S., Cardé, R. T., and Mason, C. J. 1984. Evaluation of time-averaged dispersion models for estimating pheromone concentration in a deciduous forest. J. Chem. Ecol. 10:1081–1108.

    Article  CAS  Google Scholar 

  • Fares, Y., Sharpe, P. J. H., and Magnuson, C. E. 1980. Pheromone dispersion in forests. J. Theor. Biol. 84:335–359.

    Article  PubMed  CAS  Google Scholar 

  • Holling, C. S. 1959. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91:385–398.

    Google Scholar 

  • Intachat, J., and Holloway, J. D. 2000. Is there stratification in diversity or preferred flight height of geometroid moths in Malaysian lowland tropical forest? Biodiv. Conserv. 9:1417–1439.

    Article  Google Scholar 

  • Isaacs, R., and Byrne, D. N. 1998. Aerial distribution, flight behaviour and eggload: their inter-relationship during dispersal by the sweetpotato whitefly. J. Anim. Ecol. 67:741–750.

    Article  Google Scholar 

  • Ivbijaro, M. F., and Daramola, A. M. 1977. Flight activity of the adult kola weevil, Balanogastris kolae (Coleoptera: Curculionidae) in relation to infestation. Entomol. Exp. Appl. 22:203–207.

    Article  Google Scholar 

  • Joron, M. 2005. Polymorphic mimicry, microhabitat use, and sex-specific behaviour. J. Evol. Biol. 18:547–556.

    Article  PubMed  CAS  Google Scholar 

  • Judd, G. J. R., Gardiner, M. G. T., Delury, N. C., and Karg, G. 2005. Reduced antennal sensitivity, behavioural response, and attraction of male codling moths, Cydia pomonella, to their pheromone (E,E)-8,10-dodecadien-1-ol following various pre-exposure regimes. Entomol. Exp. Appl. 114:65–78.

    Article  CAS  Google Scholar 

  • Kuenen, L. P. S., and Baker, T. C. 1981. Habituation versus sensory adaptation as the cause of reduced attraction following pulsed and constant sex pheromone pre-exposure in Trichoplusia ni. J. Insect Physiol. 27:721–726.

    Article  CAS  Google Scholar 

  • Lamb, R. J. 1983. Phenology of flea beetle (Coleoptera: Chrysomelidae) flight in relation to their invasion of canola fields in Manitoba. Can. Entomol. 115:1493–1502.

    Google Scholar 

  • Mankin, R. W., Vick, K. W., Mayer, M. S., Coffelt, J. A., and Callahan, P. S. 1980. Models for dispersal of vapors in open and confined spaces: Applications to sex pheromone trapping in a warehouse. J. Chem. Ecol. 6:929–950.

    Article  Google Scholar 

  • Mason, L. J., Jansson, R. K., and Heath, R. R. 1990. Sampling range of male sweetpotato weevils (Cylas formicarius elegantulus) (Summers) (Coleoptera: Curculionidae) to pheromone traps: Influence of pheromone dosage and lure age. J. Chem. Ecol. 16:2493–2502.

    Article  CAS  Google Scholar 

  • Mc Call, R. B. 1970. Fundamental Statistics for Psychology. Harcourt, Brace and World, New York.

    Google Scholar 

  • Mc Clendon, R. W., Mitchell, E. B., Jones, J. W., Mc Kinion, J. M., and Hardee, D. D. 1976. Computer simulation of pheromone trapping systems as applied to boll weevil population suppression: a theoretical example. Environ. Entomol. 5:799–806.

    Google Scholar 

  • Messina, F. J. 1982. Timing of dispersal and ovarian development in goldenrod leaf beetles Trirhabda virgata and T. borealis. Ann. Entomol. Soc. Am. 74:78–83.

    Google Scholar 

  • Meyer, J. R., and Colvin, S. A. 1985. Diel periodicity and trap bias in sticky trap sampling of sharpnosed leafhopper populations. J. Entomol. Sci. 20:237–243.

    Google Scholar 

  • Meyerdirk, D. E., and Moreno, D. S. 1984. Flight behavior and color-trap preference of Parabemisis myricae (Kuwana) (Homoptera: Aleyrodidae) in a citrus orchard. Environ. Entomol. 13:167–170.

    Google Scholar 

  • Meyerdirk, D. E., and Oldfield, G. N. 1985. Evaluation of trap color and height placement for monitoring Circulifer tenellus (Baker)(Homoptera: Cicadellidae). Can. Entomol. 117:505–511.

    Google Scholar 

  • Miller, J. R., Gut, L. J., de Lame, F. M., and Stelinski, L. L. 2006a. Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (Part 1): Theory. J. Chem. Ecol. 32:2089–2114.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. R., Gut, L. J., de Lame, F. M., and Stelinski, L. L. 2006b. Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (Part 2): Case Studies. J. Chem. Ecol. 32:2115–2143.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, K., and Kawasaki, K. 1977. The active space of the Spodoptera litura (F.) sex pheromone and the pheromone component determining this space. Appl. Entomol. Zool. 12:162–177.

    Google Scholar 

  • Östrand, F., and Anderbrant, O. 2003. From where are insects recruited? A new model to interpret catches of attractive traps. Agricul. Forest Entomol. 5:163–171.

    Article  Google Scholar 

  • Pearsall, I. A., and Myers, J. H. 2001. Spatial and temporal patterns of dispersal of western flower thrips (Thysanoptera: Thripidae) in nectarine orchards in British Columbia. J. Econ. Entomol. 94:831–843.

    PubMed  CAS  Google Scholar 

  • Rumbo, E. R., and Vickers, R. A. 1997. Prolonged adaptation as possible mating disruption mechanism in oriental fruit moth, Cydia (=Grapholita) molesta. J. Chem. Ecol. 23:445–457.

    Article  CAS  Google Scholar 

  • Rummel, D. R., Jordan, L. B., White, J. R., and Wade, L. J. 1977. Seasonal variation in the height of boll weevil flight. Environ. Entomol. 6:674–678.

    Google Scholar 

  • Schlyter, F., Byers, J. A., and Löfqvist, J. 1987. Attraction to pheromone sources of different quantity, quality, and spacing: Density-regulation mechanisms in bark beetle Ips typographus. J. Chem. Ecol. 13:1503–1523.

    Article  CAS  Google Scholar 

  • Shorey, H. H. 1977. Manipulation of insect pests of agricultural crops, pp. 353–367, in H. H. Shorey, and J. J. McKelvey Jr. (eds.). Chemical Control of Insect Behaviour: Theory and Application. Wiley, New York.

    Google Scholar 

  • Sower, L. L., Gaston, L. K., and Shorey, H. H. 1971. Sex pheromones of noctuid moths. XXVI. Female release rate, male response threshold, and communication distance for Trichoplusia ni. Ann. Ent. Soc. Am. 64:1448–1456.

    Google Scholar 

  • Stewart, S. D., and Gaylor, M. J. 1991. Age, sex, and reproductive status of the tarnished plant bug (Heteroptera: Miridae) colonizing mustard. Environ. Entomol. 20:1387–1392.

    Google Scholar 

  • Stone, J. D. 1986. Time and height of flight of adults of white grubs (Coleoptera: Scarabaeidae) in the southwestern United States. Environ. Entomol. 15:194–197.

    Google Scholar 

  • Sutton, O. G. 1953. Micrometeorology. McGraw-Hill, New York.

    Google Scholar 

  • Turchin, P. 1998. Quantitative Analysis of Movement. Sinauer Associates, Sunderland.

    Google Scholar 

  • Turchin, P., and Odendaal, F. J. 1996. Measuring the effective sampling area of a pheromone trap for monitoring population density of southern pine beetle (Coleoptera: Scolytidae). Environ. Entomol. 25:582–588.

    Google Scholar 

  • Vanwoerkom, G. J., Turpin, F. T., and Barrett, J. R. Jr. 1983. Wind effect on western corn rootworm (Coleoptera: Chrysomelidae) flight behavior. Environ. Entomol. 12:196–200.

    Google Scholar 

  • Wall, C., and Perry, J. N. 1987. Range of action of moth sex-attractant sources. Entomol. Exp. Appl. 44:5–14.

    Article  Google Scholar 

  • Weber, D. C., Robbins, P. S., and Averill, A. L. 2005. Hoplia equina (Coleoptera: Scarabaeidae) and nontarget capture using 2-tetradecanone-baited traps. Environ. Entomol. 34:158–163.

    Article  Google Scholar 

  • Worner, S. P. 1991. Use of models in applied entomology: the need for perspective. Environ. Entomol. 20:768–773.

    Google Scholar 

  • Zolubas, P., and Byers, J. A. 1995. Recapture of dispersing bark beetle, Ips typographus L. (Col., Scolytidae) in pheromone-baited traps: regression models. J. Appl. Entomol. 119:285–289.

    Article  Google Scholar 

Download references

Acknowledgments

In addition to the editors, I thank Ashraf El-Sayed, Steve Naranjo, and two anonymous reviewers for their reviews of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Byers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byers, J.A. Active Space of Pheromone Plume and its Relationship to Effective Attraction Radius in Applied Models. J Chem Ecol 34, 1134–1145 (2008). https://doi.org/10.1007/s10886-008-9509-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9509-0

Keywords

Navigation