Skip to main content
Log in

Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Odor-mediated insect navigation in airborne chemical plumes is vital to many ecological interactions, including mate finding, flower nectaring, and host locating (where disease transmission or herbivory may begin). After emission, volatile chemicals become rapidly mixed and diluted through physical processes that create a dynamic olfactory environment. This review examines those physical processes and some of the analytical technologies available to characterize those behavior-inducing chemical signals at temporal scales equivalent to the olfactory processing in insects. In particular, we focus on two areas of research that together may further our understanding of olfactory signal dynamics and its processing and perception by insects. First, measurement of physical atmospheric processes in the field can provide insight into the spatiotemporal dynamics of the odor signal available to insects. Field measurements in turn permit aspects of the physical environment to be simulated in the laboratory, thereby allowing careful investigation into the links between odor signal dynamics and insect behavior. Second, emerging analytical technologies with high recording frequencies and field-friendly inlet systems may offer new opportunities to characterize natural odors at spatiotemporal scales relevant to insect perception and behavior. Characterization of the chemical signal environment allows the determination of when and where olfactory-mediated behaviors may control ecological interactions. Finally, we argue that coupling of these two research areas will foster increased understanding of the physicochemical environment and enable researchers to determine how olfactory environments shape insect behaviors and sensory systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrell, L., Gueresnstein, P. G., Mechaber, W. L., Stange, G., Christensen, T. A., Nakanishi, K., and Hildebrand, J. G. 2005. Effect of elevated atmospheric CO2 on oviposition behavior in Manduca sexta moths. Global Change Biology 11:1272–1282.

    Google Scholar 

  • Atema, J. 1996. Eddy chemotaxis and odor landscapes: Exploration of nature with animal sensors. Biol. Bull. 191:129–138.

    Google Scholar 

  • Baldocchi, D. D. 1989. Turbulent transfer in a deciduous forest. Tree Physiol. 5:357–377.

    PubMed  Google Scholar 

  • Bargmann, C. I. 2006. Comparative chemosensation from receptors to ecology. Nature 444:295–301.

    PubMed  CAS  Google Scholar 

  • Bau, J., Justus, K. A., and Cardé, R. T. 2002. Antennal resolution of pulsed pheromone plumes in three moth species. J. Insect Physiol. 48:433–442.

    PubMed  CAS  Google Scholar 

  • Bogner, F. 1990. Sensory physiological investigation of the carbon dioxide receptors in Lepidoptera. J. Insect Physiol. 36:951–957.

    Google Scholar 

  • Borsdorf, H., and Eiceman, G. A. 2006. Ion mobility spectrometry: Principles and applications. Appl. Spectrosc. Rev. 41:323–375.

    CAS  Google Scholar 

  • Cardé, R. T., and Willis, M. A. 2008. Navigation strategies used by insects to find distant, wind-borne sources of odor. J. Chem. Ecol. (this volume).

  • Cermak, J. E., and Arya, S. P. S. 1970. Problems of atmospheric shear flows and their laboratory simulation. Boundary-Layer Meteorol. 1:40–60.

    Google Scholar 

  • Charles, L., Riter, L. S., and Cooks, R. G. 2001. Direct analysis of semivolatile organic compounds in air by atmospheric pressure chemical ionization mass spectrometry. Anal. Chem. 73:5061–5065.

    PubMed  CAS  Google Scholar 

  • Chen, H., Wortmann, A., Zhang, W., and Zenobi, R. 2007. Rapid in vivo fingerprinting of nonvolatile compounds in breath by extractive electrospray ionization quadrupole time-of-flight mass spectrometry. Angew. Chem. Int. Ed. 46:580–583.

    CAS  Google Scholar 

  • Christian, T. J., Kleiss, B., Yokelson, R. J., Holzinger, R., Crutzen, P. J., Hao, W. M., Shitai, T., and Blake, D. R. 2004. Comprehensive laboratory measurements of biomass-burning emissions: 2. First intercomparison of open-path FTIR, PTR-MS, and GC-MS//FID//ECD. J. Geophys. Res. 109:1–12.

    Google Scholar 

  • Cias, P., Wang, C., and Dibble, T. S. 2007. Absorption cross-sections of the C-H overtone of volatile organic compounds: 2 methyl-1,3-butadiene (isoprene), 1,3-butadiene, and 2,3-dimethyl-1,3-butadiene. Appl. Spectrosc. 61:230–236.

    PubMed  CAS  Google Scholar 

  • Cody, R. B., Larame’e, J. A., and Durst H. D. 2005. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77:2297–2302.

    PubMed  CAS  Google Scholar 

  • Conner, W. E., Eisner, T., Meer, R. K., Guerrero, A., Ghiringelli, D., and Meinwald, J. 1980. Sex attractant of an arctiid moth (Utetheisa ornatrix): A pulsed chemical signal. Behav. Ecol. Sociobiol. 7:55–63.

    Google Scholar 

  • Cooks, R. G., Ouyang, Z., Takats, Z., and Wiseman, J. M. 2006. Ambient mass spectrometry. Science 311:1566–1570.

    PubMed  CAS  Google Scholar 

  • D’ALessandro, M., and Turlings, T. C. J. 2006. Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 131:24–32.

  • De gouw, J., and Warneke, C. 2007. Measurements of volatile organic compounds in the Earth’s atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom. Rev. 26:223–257.

    PubMed  CAS  Google Scholar 

  • Debose, J. L., and Nevitt, G. A. 2008. Behavioral responses and navigational strategies to natural olfactory stimuli II: fish and birds. J. Chem. Ecol. (this volume).

  • Dinar, N., Kaplan, H., and Kleiman, M. 1988. Characterization of concentration fluctuations of a surface plume in a neutral boundary layer. Boundary-Layer Metereol. 45:157–175.

    Google Scholar 

  • Dorfner, R., Ferge, T., Yeretzian, C., Kettrup, A., and Zimmermann, R. 2004. Laser mass spectrometry as on-line sensor for industrial process analysis: Process control of coffee roasting. Anal. Chem. 76:1386–1402.

    PubMed  CAS  Google Scholar 

  • Eiceman, G. A., Snyder, A. P., and Blyth, D. A. 1990. Monitoring of airborne organic vapors using ion mobility spectrometry. I. J. Env. Anal. Chem. 38:415–425.

    CAS  Google Scholar 

  • Elkinton, J. S., Cardé, R. T., and Mason, C. J. 1984. Evaluation of time-average dispersion models for estimating pheromone concentration in a deciduous forest. J. Chem. Ecol. 10:1081–1108.

    CAS  Google Scholar 

  • Fackrell, J. E., and Robins, A. G. 1982. The effects of source size on concentration fluctuations in plumes. Boundary-Layer Meteorol. 22:335–350.

    Google Scholar 

  • Filella, I., Penuelas, J., and Llusia, J. 2006. Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid. New Phytologist 169:135–144.

    PubMed  CAS  Google Scholar 

  • Finelli, C. M., Pentcheff, N. D., Zimmer-Faust, R. K., and Wethey, D. S. 1999. Odor Transport in Turbulent Flows: Constraints on Animal Navigation. Limnol. Oceanogr. 44:1056–1071.

    CAS  Google Scholar 

  • Finelli, C. M., Pentcheff, N., Zimmer, R. K., and Wethey, D. S. 2000. Physical constraints on ecological processes: A field test of odor-mediated foraging. Ecology 81:784–797.

    Google Scholar 

  • Freeman, C. G., and Mcewan, M. J. 2002. Rapid analysis of trace gases in complex mixtures using selected ion flow tube-mass spectrometry. Australian J. Chem. 55:491–494.

    CAS  Google Scholar 

  • French, A. S., and Meisner, S. 2007. A new method for wide frequency range dynamic olfactory stimulation and characterization. Chem. Senses 32:681–688.

    PubMed  CAS  Google Scholar 

  • Guerenstein, P., and Guerin, P. 2001. Olfactory and behavioural responses of the blood-sucking bug Triatoma infestans to odours of vertebrate hosts. J. Exp. Biol. 204:585–597.

    PubMed  CAS  Google Scholar 

  • Guerenstein, P., Christensen, T. A., and Hildebrand, J. G. 2004. Sensory processing of ambient CO2 information in the brain of the moth Manduca sexta. J. Comp. Physiol. A 190:707–725.

    Google Scholar 

  • Guerenstein, P., and Hildebrand, J. G. 2008. Roles and effects of environmental carbon dioxide in insect life. Annu. Rev. Entomol. 53:161–178.

  • Haefliger, O. P., and Jeckelmann, N. 2007. Direct mass spectrometric analysis of flavors and fragrances in real applications using DART. Rapid Commun. Mass Spectrom. 21:1361–1366.

    PubMed  CAS  Google Scholar 

  • Heinbockel, T., Christensen, T. A., and Hildebrand, J. G. 1999. Temporal tuning of odor responses in pheromone-responsive projection neurons in the brain of the sphinx moth Manduca sexta. J. Comp. Neurol. 409:1–12.

    PubMed  CAS  Google Scholar 

  • Hildebrand, J. G. 1995. Analysis of chemical signals by nervous systems. Proc. Natl. Acad. Sci. USA 92:67–74.

    PubMed  CAS  Google Scholar 

  • Hills, A. J., and Zimmerman, P. R. 1990. Isoprene measurement by ozone-induced chemiluminescence. Anal. Chem. 62:1055–1060.

    CAS  Google Scholar 

  • Ho, C. K., Robinson, A., Miller, D. R., and Davis, M. J. 2007. Overview of sensors and needs for environmental monitoring. Sensors 5:4–37.

    Article  Google Scholar 

  • Iwana, T., Mitsutaka, H., Isao, Y., Okada, H., and Hiraoka, K. 2006. Development of sniffing atmospheric pressure Penning ionization. J. Mass Spectrom. Soc. Japan 54:227–233.

    Google Scholar 

  • Jublot, L., Linforth, R. S. T., and Taylor, A. J. 2005. Direct atmospheric pressure chemical ionisation ion trap mass spectrometry for aroma analysis: Speed, sensitivity and resolution of isobaric compounds. I. J. Mass Spectrom. 243:269–277.

    CAS  Google Scholar 

  • Justus, K. A., Murlis, J., Jones, C. D., and Cardé, R. T. 2002. Measurement of odor-plume structure in a wind tunnel using photoionization detector and a tracer gas. Env. Fluid Mech. 2:115–142.

    CAS  Google Scholar 

  • Justus, K. A., Cardé, R. T., and French, A. S. 2005. Dynamic properties of antennal responses to pheromone in two moth species. J. Neurophysiol. 93:2233–2239.

    PubMed  CAS  Google Scholar 

  • Kachanov, A. A., Crosson, E. R., and Paldus, B. A. 2006. Tunable diode lasers: Expanding the horizon for laser absorption spectroscopy. Optics Photonics News 16:44–50.

    Google Scholar 

  • Kaimal, J., and Finnigan, J. 1994. Atmospheric Boundary Layer Flows, 1 edn. Oxford University Press, Oxford.

    Google Scholar 

  • Kaissling, K. E., and Priesner, E. 1970. Die Riechschwelle des Seidenspinners. Naturwissenschaften 57:23–28.

  • Karl, T., Guenther, A., Jordan, A., Fall, R., and Lindinger, W. 2000. Eddy covariance measurement of biogenic oxygenated VOC emissions from harvesting. Atmos. Env. 35:491–495.

    Google Scholar 

  • Karl, T., Jobson, T., Kuster, W. C., Williams, E., Stutz, J., Shetter, R., Hall, S. R., Goldan, P., Fehsenfeld, F., and Lindinger, W. 2003. Use of proton-transfer-reaction mass spectrometry to characterize volatile organic compound sources at the La Porte super site during the Texas Air Quality Study 2000. J. Geophys. Res. 108:ACH13–1–ACH13/15.

  • Khunemann, F., Wolfertz, M., Arnold, S., Lagemann, M., Popp, A., Schuler, U., Jux, A., and Boland, W. 2002. Simultaneous online detection of isoprene and isoprene-d2 using infrared photoacoustic spectroscopy. App. Physics B 75:397–403.

    Google Scholar 

  • Kleineidam, C., and Roces, F. 2000. Carbon dioxide concentrations and nest ventilation in nests of the leaf-cutting ant Atta vollenweideri. Insectes Sociaux 47:241–248.

    Google Scholar 

  • Kleineidam, C., Ernst, R., and Roces, F. 2001. Wind-induced ventilation of the giant nests of the leaf-cutting ant Atta vollenweideri. Naturwissenschaften 88:301–305.

    PubMed  CAS  Google Scholar 

  • Koehl, M. A. R. 2006. The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chem. Senses 31:93–105.

  • Kuenen, L., and Carde, R. T. 1994. Strategies for recontacting a lost pheromone plume: Casting and upwind flight in the male gypsy moth. Physiol. Entomol. 19:15–29.

    Google Scholar 

  • Kunert, M., Biedermann, A., Koch, T., and Boland, W. 2002. Ultrafast sampling and analysis of plant volatiles by a hand-held miniaturised GC with pre-concentration unit: Kinetic and quantitative aspects of plant volatile production. J. Sep. Sci. 25:677–684.

    CAS  Google Scholar 

  • Lambertus, G. R., Fix, C. S., Reidy, S. M., Miller, R. A., Wheeler, D., Nazarov, E., and Sacks, R. 2005. Silicon microfabricated column with microfabricated differential mobility spectrometer for GC analysis of volatile organic compounds. Anal. Chem. 77:7563–7571.

  • Leclerc, M. Y., Meskhidze, N., and Finn, D. 2003. Comparison between measured tracer fluxes and footprint model predictions over a homogeneous canopy of intermediate roughness. Agric. For. Meteorol. 117:145–158.

    Google Scholar 

  • Lindinger, W., Hansel, A., and Jordan, A. 1998a. Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chem. Soc. Rev. 27:347–354.

    CAS  Google Scholar 

  • Lindinger, W., Hansel, A., and Jordan, A. 1998b. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS). Medical applications, food control, and environmental research. I. J. Mass Spectrom. 173:191–241.

    CAS  Google Scholar 

  • Lu, C. J., and Zellers, E. T. 2002. Multi-adsorbent preconcentration/focusing module for portable-GC/microsensor-array analysis of complex vapor mixtures. Analyst 127:1061–1068.

    PubMed  CAS  Google Scholar 

  • Mafra-Neto, A., and Carde, R. T. 1994. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369:142–144.

    CAS  Google Scholar 

  • Matisola, E., and Dömötörová, M. 2003. Fast gas chromatography and its use in trace analysis. J. Chromatogr. A 1000:199–221.

    Google Scholar 

  • Miller, J. R., and Roelofs, W. L. 1978. Sustained-flight tunnel for measuring insect responses to wind-borne sex pheromones. J. Chem. Ecol. 4:187–198.

    Google Scholar 

  • Mole, N., and Jones, C. D. 1994. Concentration fluctuation data from dispersion experiments carried out in stable and unstable conditions. Boundary-Layer Meteorol. 67:41–74.

    Google Scholar 

  • Moore, P. A., and Atema, J. 1991. Spatial information in the three-dimensional fine structure of an aquatic odor plume. Biol. Bull. 181:408–418.

    Google Scholar 

  • Moore, P., and Crimaldi, J. 2004. Odor landscapes and animal behavior: tracking odor plumes in different physical worlds. J. Mar. Sys. 49:55–64.

    Google Scholar 

  • Murlis, J. 1997. Odor plumes and the signal they provide, pp. 221–231, in R. T. Carde, and A. K. Minks (eds.). Insect Pheromone Research: New Directions. Chapman and Hall, New York.

    Google Scholar 

  • Murlis, J., and Jones, C. 1981. Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol. Entomol. 6:71–86.

    Google Scholar 

  • Murlis, J., Elkinton, J. S., and Carde, R. T. 1992. Odor plumes and how insects use them. Annu. Rev. Entomol. 37:505–532.

    Google Scholar 

  • Murlis, J., Willis, M. A., and Carde, R. T. 2000. Spatial and temporal structures of pheromone plumes in fields and forests. Physiol. Entomol. 25:211–222.

    CAS  Google Scholar 

  • Mustaparta, H. 1975. Responses of single olfactory cells in the pine weevil Hylobius abietis L. (Col.: Curculionidae). J. Comp. Physiol. A 97:271–290.

    Google Scholar 

  • Mylne, K. R. 1992. Concentration fluctuation measurements in a plume dispersing in a stable surface layer. Boundary-Layer Meteorol. 60:15–48.

    Google Scholar 

  • Mylne, K. R., Davidson, M. J., and Thomson, D. J. 1996. Concentration fluctuation measurements in tracer plumes using high and low frequency response detectors. Boundary-Layer Meteorol. 79:225–242.

    Google Scholar 

  • Mylne, K., and Mason, P. 1991. Concentration fluctuation measurements in a dispersing plume up to a range of 1000 m. Quart. J. Roy. Meteorol. Soc. 117:177–206.

    Google Scholar 

  • Ngai, A. K. Y., Persijn, S. T., Harren, F. J. M., Verbraak, H., and Linnartz, H. 2007. Selective trace gas detection of complex molecules with a continuous wave optical parametric oscillator using a planar jet expansion. Appl. Phys. Lett. 90:081109–1–081109-3.

    Google Scholar 

  • Palassis, J. 1997. Portable photoionization instruments. Appl. Occup. Environ. Hyg. 12:528–531.

  • Park, K. C., Ochieng, S. A., Zhu, J., and Baker, T. C. 2002. Odor discrimination using insect electroantennogram responses from an insect antennal array. Chem. Senses 27:343–352.

    PubMed  Google Scholar 

  • Rauner, J. L. 1976. Deciduous forests, pp. 241–264, in J. L. Monteith (ed.). Vegation and the Atmosphere, Vol. II Case Studies. Academic Press, London.

    Google Scholar 

  • Reidy, S., George, D., Agah, M., and Sacks, R. 2007. Temperature-programmed GC using silicon microfabricated columns with integrated heaters and temperature sensors. Anal. Chem. 79:2911–2917.

    PubMed  CAS  Google Scholar 

  • Röck, F., Barsan, N., and Weimar, U. 2008. Electronic nose: Current status and future trends. Chem. Rev. 108:705–725.

    PubMed  Google Scholar 

  • Roelofs, W. L. 1984. Electroantennogram assays: Rapid and convenient screening procedures for pheromones, pp. 131–159, in H. E. Hummel, and T. A. Miller (eds.). Techniques in Pheromone ResearchSpringer, New York.

    Google Scholar 

  • Sanchez, J. M., and Sacks, R. 2007. Performance characteristics of a new prototype for a portable GC using ambient air as carrier gas for on-site analysis. J. Sep. Sci. 30:1052–1060.

    PubMed  CAS  Google Scholar 

  • Schlichting, H. 1987. Boundary-Layer Theory, 8th edn. McGraw-Hill, New York.

    Google Scholar 

  • Schneider, D. 1957. Elektrophysiologishe untersuchungen von chemo-und mechanorezeptoren der antennne des Seidenspinners Bombyx mori L. Z Vergi. Physiol. 40:8–41.

    Google Scholar 

  • Schneider, D. 1969. Insect olfaction: Deciphering system for chemical messages. Science 163:1031–1037.

    PubMed  CAS  Google Scholar 

  • Song, M. S., Marriotr, P., Ryant, D., and Wynne, P. 2006. Analytical limbo: How low can you go? LCGC North America 24:1012–1029.

    CAS  Google Scholar 

  • Sprayberry, J. D. H., and Daniel, T. L. 2007. Flower tracking in hawkmoths: behavior and energetics. J. Exp. Biol. 210:37–45.

    PubMed  Google Scholar 

  • Stange, G. 1996. Sensory and behavioural responses of terrestrial invertebrates to biogenic carbon dioxide gradients, pp. 223–253, in G. Stanhill (ed.). Advances in Bioclimatology. Springer, Heidelberg.

    Google Scholar 

  • Stange, G. 1997. Effects of changes in atmospheric carbon dioxide on the location of hosts by the moth, Cactoblastis cactorum. Oecologia 110:539–545.

    Google Scholar 

  • Stull, R. B. 1988. An Introduction to Boundary Layer Meteorology. Kluwer, Dordrecht.

    Google Scholar 

  • Stranden, M., Liblikas, I., König, W. A., Almaas, T. J., Borg-Karlson, A.-K., and Mustaparta, H. 2003. (–)-Germacrene D receptor neurones in three species of heliothine moths: structure-activity relationships. J. Comp. Physiol A 189:563–577.

    CAS  Google Scholar 

  • Thistle, H. H., Peterson, H., Allwine, G., Lamb, B., Strand, T., Holsten, E. H., and Shea, P. J. 2004. Surrogate Pheromone plumes in three forest trunk spaces: composite statistics and case studies. For. Sci. 50:610–625.

    Google Scholar 

  • Tholl, D., Boland, W., Hansel, A., Loreto, F., Röse, U. S. R., and Schnitzler, J.-P. 2006a. Practical approaches to plant volatile analysis. Plant J. 45:540–560.

    PubMed  CAS  Google Scholar 

  • Tholl, D., and Röse, U. S. R. 2006b. Detection and identification of floral scent compounds, pp. 3–25, in N. Dudavera, and E. Pichersky (eds.). Biology of Floral Scent. CRC, Boca Raton, FL.

    Google Scholar 

  • Todd, L. 2000. Mapping the air in real-time to visualize the flow of gases and vapors: occupational and environmental applications. Appl. Occup. Environ. Hyg. 15:106–113.

    PubMed  CAS  Google Scholar 

  • Vickers, N. J., and Baker, T. C. 1994. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Natl. Acad. Sci. USA 91:5756–5760.

    PubMed  CAS  Google Scholar 

  • Vickers, N. J., and Baker, T. C. 1996. Latencies of behavioral response to interception of filaments of sex pheromone and clean air influence flight track shape in Heliothis virescens (F.) males. J. Comp. Physiol. A 178:831–847.

    Google Scholar 

  • Visser, J. H. 1976. The design of a low-speed wind tunnel as an instrument for the study of olfactory orientation in the Colorado beetle (Leptinotarsa decemlineata). Ent. Exp. Appl. 20:275–288.

    Google Scholar 

  • Vogt, F. 2006. Trends in remote spectroscopic sensing and imaging - experimental techniques and chemometric concepts. Cur. Anal. Chem. 2:107–127.

    CAS  Google Scholar 

  • Von dahl, C. C., Heavecker, M., Schloegl, R., and Baldwin, I. T. 2006. Caterpillar-elicited methanol emission: A new signal in plant-herbivore interactions? Plant J. 46:948–960.

    PubMed  CAS  Google Scholar 

  • Wang, C., and Mbi, A. 2007. A new acetone detection device using cavity ringdown spectroscopy at 266 nm: evaluation of the instrument performance using acetone sample solutions. Meas. Sci. Tech. 18:2731–2741.

    CAS  Google Scholar 

  • Webster, D. R., and Weissburg, M. J. 2001. Chemosensory guidance cues in a turbulent chemical odor plume. Limnol. Oceanogr. 46:1034–1047.

    CAS  Google Scholar 

  • Weissburg, M. J. 2000. The fluid dynamical context of chemosensory behavior. Biol. Bull. 198:188–202.

    PubMed  CAS  Google Scholar 

  • Weissburg, M. J., and Zimmer-Faust, R. K. 1993. Life and death in moving fluids: Hydrodynamic effects on chemosensory-mediated predation. Ecology 74:1428–1443.

    Google Scholar 

  • Whalley, L. K., Lewis, A. C., Mcquaid, J. B., Purvis, R. M., Lee, J. D., Stemmler, K., Zellweger, C., and Ridgeopn, P. 2004. Two high-speed, portable GC systems designed for the measurement of non-methane hydrocarbons and PAN: Results from the Jungfraujoch high altitude observatory. J. Env. Mon. 6:234–241.

    CAS  Google Scholar 

  • Willis, M. A., David, C. T., Murlis, J., and Cardé, R. T. 1994. Effects of pheromone plume structure and visual stimuli on the pheromone-modulated upwind flight of male gypsy moths (Lymantria dispar) in a Forest (Lepidoptera: Lymantriidae). J. Insect Behav. 7:385–409.

    Google Scholar 

  • Willis, M. A., and Baker, T. C. 1988. Effects of varying sex pheromone component ratios on the zigzagging flight movements of the oriental fruit moth, Grapholita molesta. J. Insect Behav. 1:357–371.

    Google Scholar 

  • Wolf, H., and Wehner, R. 2000. Pinpointing food sources: olfactory and anemotactic orientation in desert ants, Cataglyphis fortis. J. Exp. Biol. 203:857–868.

    PubMed  CAS  Google Scholar 

  • Yee, E., Kosteniuk, P. R., Chandler, G. M., Biltoft, C. A., and Bowers, J. F. 1993. Statistical characteristics of concentration fluctuations in dispersing plumes in the atmospheric surface layer. Boundary-Layer Meteorol. 65:69–109.

    Google Scholar 

  • Zimmer, R. K., and Butman, C. A. 2000. Chemical signaling processes in the marine environment. Biol. Bull. 198:168–187.

    PubMed  CAS  Google Scholar 

  • Zimmer, R. K., and Zimmer, C. A. 2008. Dynamic scaling in chemical ecology. J. Chem. Ecol. (this volume).

  • Zimmer-Faust, R. K., Stanfill, J. M., and Collard, S. B. 1988. A fast, multi-channel fluorometer for investigating aquatic chemoreception and odor trails. Limnol. Oceanogr. 33:1586–1594.

    Article  CAS  Google Scholar 

  • Zimmer-Faust, R. K., Finelli, C. M., Pentcheff, N. D., and Wethey, D. S. 1995. Odor plumes and animal navigation in turbulent water flow: A field study. Biol. Bull. 188:111–116.

    Google Scholar 

  • Zimmermann, R. 2005. Laser ionisation mass spectrometry for online analysis of complex gas mixtures and combustion effluents. Anal. Bioanal. Chem. 381:57–60.

    PubMed  CAS  Google Scholar 

  • Zollner, G. E., Torr, S. J., Ammann, C., and Meixner, F. X. 2004. Dispersion of carbon dioxide plumes in African woodland: implications for host-finding by tsetse flies. Physiol. Entomol. 29:381–394.

    Google Scholar 

Download references

Acknowledgments

We thank C. Reisenman, H. Lei, and C. M. Jones for comments during earlier versions of this manuscript. We especially thank H. Thistle, C. A. Zimmer, and R. K. Zimmer for discussions on odor plume dynamics and atmospheric processes. This work was supported by National Institute of Health grant DC-02751 (JGH), National Science Foundation grant CHE-0216226, and a seed grant from the University of Arizona’s Center for Insect Science. J. A. R. was supported by a NIH postdoctoral training grant (2 K12 GM000708-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Riffell.

Additional information

Notation for Physical Processes and Analytical Technologies, respectively, is summarized in Appendices 1 and 2.

Appendices

Appendix 1

Table 1 Notation for physical processes

Appendix 2

Table 2 Notation for analytical technologies

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riffell, J.A., Abrell, L. & Hildebrand, J.G. Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment. J Chem Ecol 34, 837–853 (2008). https://doi.org/10.1007/s10886-008-9490-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9490-7

Keywords

Navigation