Skip to main content
Log in

Phytotoxic Catechin Leached by Seeds of the Tropical Weed Sesbania virgata

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Sesbania virgata (Cav.) Pers (wand riverhemp) is a fast-growing tropical legume species that has been used for revegetation of riparian forests and rehabilitation of degraded areas and that exhibits an invasive behavior in certain regions of Brazil. Preliminary studies have shown that seed leachates inhibit the germination and development of seedlings of some crop species. In this study, we report that the seed leachates of S. virgata inhibit the growth of Arabidopsis thaliana and rice. The flavonoid (+)-catechin is found in high amounts in these leachates. It was active at concentrations of 50 μg ml−1, and its effect was not distinguishable from the (+)-catechin obtained from a commercial source. We found that (+)-catechin is located in the seed coat and is rapidly released in high concentrations (235 μg per seed) at the beginning of imbibition. Quercetin was also detected in the seed coat of S. virgata, but it was not released from the seeds. Other phytotoxic compounds in the seed leachates were also detected. The fact that S. virgata releases high amounts of (+)-catechin, which also has antimicrobial activity, and other phytotoxins from its seeds at the earliest stages of its development might represent some adaptative advantage to the seedling that contributes to its invasive behavior and successful establishment in different soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bais, H. P., Walker, T. S., Stermitz, F. R., Hufbauer, R. A., and Vivanco, J. M. 2002. Enantiomeric-dependent phytotoxic and antimicrobial activity of (+)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol. 128:1173–1179.

    Article  PubMed  CAS  Google Scholar 

  • Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M., and Vivanco, J. M. 2003. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380.

    Article  PubMed  CAS  Google Scholar 

  • Blair, A. C., Hanson, B. D., Brunk, G. R., Marrs, R. A., Westra, P., Nissen, S. J., and Hufbauer, R. A. 2005. New techniques and finds in the study of a candidate allelochemical implicated in invasion success. Ecol. Lett. 8:1039–1047.

    Article  Google Scholar 

  • Blair, A. C., Nissen, S. J., Brunk, G. R., and Hufbauer, R. A. 2006. A lack of evidence for an ecological role of the putative allelochemical (±)-catechin in spotted knapweed invasion success. J. Chem. Ecol. 32:2327–2331.

    Article  PubMed  CAS  Google Scholar 

  • Buckeridge, M. S., and Dietrich, S. M. C. 1996. Mobilisation of the raffinose family oligosaccharides and galactomannan in germinating seeds of Sesbania marginata Benth. (Leguminosae-Faboideae). Plant Sci. 117:33–43.

    Article  CAS  Google Scholar 

  • Buta, G. J. 1983. Linoleic acid as a plant growth inhibitor from seeds of Sesbania punicea. J. Nat. Prod. 46:775.

    Article  Google Scholar 

  • Buta, J. G., and Lusby, W. R. 1986. Catechins as germination and growth inhibitors in Lespedeza seeds. Phytochemistry 25:93–95.

    Article  CAS  Google Scholar 

  • Ceballos, L., Hossaert-mckey, M., Mckey, D., and Andary, C. 1998. Rapid deployment of allelochemicals in exudates of germinating seeds of Sesbania (Fabaceae): roles of seed anatomy and histolocalization of polyphenolic compounds in anti-pathogen defense of seedlings. Chemoecology 8:141–151.

    Article  CAS  Google Scholar 

  • D’Abrosca, B., Dellagreca, M., Fiorention, A., Isidori, M., Monaco, P., and Pacifico, S. 2006. Chemical constituents of the aquatic plant Schoenoplectus lacustris: evaluation of phytotoxic effects on the green alga Selenatrum capricornutum. J. Chem. Ecol. 32:81–96.

    Article  PubMed  CAS  Google Scholar 

  • Furubayashi, A., Hiradate, S., and Fujii, Y. 2007. Role of catechol structure in the adsorption and transformation reactions of l-Dopa in soils. J. Chem. Ecol. 33:239–250.

    Article  PubMed  CAS  Google Scholar 

  • Gorst-Allman, C. P., Steyn, P. S., Vleggaar, R., and Grobbelaar, N. 1984. Structure elucidation of sesbanimide using high-field NMR spectroscopy. J Chem. Soc. 1:1311–1314.

    Google Scholar 

  • Iqbal, Z., Hiradate, S., Noda, A., Isojima, S., and Fujii, Y. 2003. Allelopathic activity of buckwheat: isolation and characterization of phenolics. Weed Sci. 51:657–662.

    Article  CAS  Google Scholar 

  • Kissmann, K. G., and Groth, D. 1999. Plantas Infestantes e nocivas. BASF, São Bernardo do Campo.

    Google Scholar 

  • Korver, O., and Wilkins, C. K. 1971. Circular dichroism spectra of flavonols. Tetrahedron 27:5459–5465.

    Article  CAS  Google Scholar 

  • Laterra, P., and Bazzalo, M. E. 1999. Seed-to-seed allelopathic effects between two invaders of burned Pampa grasslands. Weed Res. 39:297–308.

    Article  Google Scholar 

  • Murashige, T., and Skoog, F. 1962. A revised medium for rapid growth and bioassay with tissue culture. Physiol. Plant. 15:473–497.

    Article  CAS  Google Scholar 

  • Ndakidemi, P. A., and Dakora, F. D. 2003. Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Funct. Plant Biol. 30:729–745.

    Article  Google Scholar 

  • Nelson, E. B. 2004. Microbial dynamics and interactions in the spermosphere. Annu. Rev. Phytopathol. 42:271–309.

    Article  PubMed  CAS  Google Scholar 

  • Perry, L. G., Johnson, C., Alford, E. R., Vivanco, J. M., and Paschke, M. W. 2005a. Screening of grassland plants for restoration after spotted knapweed invasion. Restor. Ecol. 13:725–735.

    Article  Google Scholar 

  • Perry, L. G., Thelen, G. C., Ridenour, W. M., Weir, T. L., Callaway, R. M., Paschke, M. W., and Vivanco, J. M. 2005b. Dual role for an allelochemical: (±)-catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment. J. Ecol. 93:1126–1135.

    Article  CAS  Google Scholar 

  • Perry, L. G., Thelen, G. C., Ridenour, W. M., Callaway, R. M., Aschke, M. W., and Vivanco, J. M. 2007. Concentrations of the allelochemical (±)-catechin in Centaurea maculosa soils. J. Chem. Ecol. 33:2337–2344.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, D. A., Fox, T. C., and Six, J. 2006. Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2. Global Change Biol. 12:561–567.

    Article  Google Scholar 

  • Pott, A., and Pott, V. J. 1994. Plantas do Pantanal. EMPRAPA/CPAP/SPI, Corumbá.

    Google Scholar 

  • Powell, R. G., Plattner, R. D., and Suffness, M. 1990. Ocurrence of sesbanimide in seeds of toxic Sesbania species. Weed Sci. 38:148–152.

    CAS  Google Scholar 

  • Singh, S., Ladha, J. K., Gupta, R. K., Bhushan, L., Rao, A. N., Sivaprasad, S., and Singh, P. P. 2007. Evaluation of mulching, intercropping with Sesbania and herbicide use for weed management in dry-seeded rice (Oryza sativa L.). Crop Protect 26:518–524.

    Article  CAS  Google Scholar 

  • Thelen, G. C., Vivanco, J. M., Newingham, B., Good, W., Bais, H. P., Landres, P., Caesar, A., and Callaway, R. M. 2005. Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives. Ecol. Lett. 8:209–217.

    Article  Google Scholar 

  • Thorpe, A. 2006. Biochemical effects of Centaurea maculosa on soil nutrient cycles and plant communities. PhD dissertation, University of Montana, Missoula.

  • Van Staden, J., and Grobbelaar, N. 1995. The effect of sesbanimide and Sesbania seed extracts on germination and seedling growth of a number of plant species. Environ. Exp. Bot. 35:321–329.

    Article  Google Scholar 

  • Veluri, R., Weir, T. L., Bais, H. P., Stermitz, F. R., and Vivanco, J. M. 2004. Phytotoxic and antimicrobial activities of catechin derivatives. J. Agric. Food Chem. 52:1077–1082.

    Article  PubMed  CAS  Google Scholar 

  • Weir, T. L., Bais, H. P., Stull, V. J., Callaway, R. M., Thelen, G. C., Ridenour, W. M., Bhamidi, S., Stermitz, F. R., and Vivanco, J. M. 2006. Oxalate contributes to the resistance of Gaillardia grand flora and Lupinus sericeus to a phytotoxin produced by Centaurea maculosa. Planta 223:785–795.

    Article  PubMed  CAS  Google Scholar 

  • Xuan, T. D., Chung, M. III, Khanh, T. D., and Tawata, S. 2006. Identification of phytotoxic substances from early growth of barnyard grass (Echinochloa crusgalli) root exudates. J. Chem. Ecol. 32:895–906.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank the Fundação de Amparo à Pesquisa de São Paulo (FAPESP-Brazil) for the PhD fellowship to Kelly Simões (proc. 2004/04477-7) and for the grant to the project (FAPESP, proc. 2005/04139-7). We also thank CNPq for the research fellow grant to Marcia R. Braga. We thank Emily Wortman-Wunder for the editorial assistance. This work was also supported by a grant from the National Science Foundation (grant no. NSF-IBN 0335203 to J.M.V. and F.R.S.) and by DOD-SERDP (grant no. SI1388 to J.M.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia R. Braga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simões, K., Du, J., Kretzschmar, F.S. et al. Phytotoxic Catechin Leached by Seeds of the Tropical Weed Sesbania virgata . J Chem Ecol 34, 681–687 (2008). https://doi.org/10.1007/s10886-008-9443-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9443-1

Keywords

Navigation