Skip to main content
Log in

Response to Host Volatiles by Native and Introduced Populations of Dendroctonus valens (Coleoptera: Curculionidae, Scolytinae) in North America and China

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Bark beetles (Coleoptera: Curculionidae, Scolytinae) have specialized feeding habits, and commonly colonize only one or a few closely related host genera in their geographical ranges. The red turpentine beetle, Dendroctonus valens LeConte, has a broad geographic distribution in North America and exploits volatile cues from a wide variety of pines in selecting hosts. Semiochemicals have been investigated for D. valens in North America and in its introduced range in China, yielding apparent regional differences in response to various host volatiles. Testing volatiles as attractants for D. valens in its native and introduced ranges provides an opportunity to determine whether geographic separation promotes local adaptation to host compounds and to explore potential behavioral divergence in native and introduced regions. Furthermore, understanding the chemical ecology of host selection facilitates development of semiochemicals for monitoring and controlling bark beetles, especially during the process of expansion into new geographic ranges. We investigated the responses of D. valens to various monoterpenes across a wide range of sites across North America and one site in China, and used the resulting information to develop an optimal lure for monitoring populations of D. valens throughout its Holarctic range. Semiochemicals were selected based on previous work with D. valens: (R)-(+)-α-pinene, (S)-(−)-α-pinene, (S)-(−)-β-pinene, (S)-(+)-3-carene, a commercially available lure [1:1:1 ratio of (R)-(+)-α-pinene:(S)-(−)-β-pinene:(S)-(+)-3-carene], and a blank control. At the release rates used, (+)-3-carene was the most attractive monoterpene tested throughout the native range in North America and introduced range in China, confirming results from Chinese studies. In addition to reporting a more effective lure for D. valens, we present a straightforward statistical procedure for analysis of insect trap count data yielding cells with zero counts, an outcome that is common but makes the estimation of the variance with a Generalized Linear Model unreliable because of the variability/mean count dependency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agresti, A. 1996. An Introduction to Categorical Data Analysis. John Wiley and Sons, New York.

    Google Scholar 

  • Becerra, J. X. 1997. Insects on plants: Macro evolutionary chemical trends in host use. Science 276:253–256.

    Article  PubMed  CAS  Google Scholar 

  • Bernays, E. A. and Graham, M. 1988. On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892.

    Article  Google Scholar 

  • Byers, J. A. 1989. Chemical ecology of bark beetles. Experientia 45:271–283.

    Article  CAS  Google Scholar 

  • Byers, J. A. 1992. Attraction of bark beetles, Tomicus piniperda, Hylurgops palliatus, and Trypodendron domesticum and other insects to short-chain alcohols and monoterpenes. J. Chem. Ecol. 18:2385–2402.

    Article  CAS  Google Scholar 

  • Byers, J. A. 1995. Host tree chemistry affecting colonization in bark beetles, pp. 154–213, in R. T. Cardé and W. J. Bell (eds.). Chemical Ecology of Insects, 2nd ed. Chapman & Hall, New York, NY.

    Google Scholar 

  • Byers, J. A., Lanne, B. S., Löfqvist, J., Schlyter, F., and Bergström, G. 1985. Olfactory recognition of host-tree susceptibility by pine shoot beetles. Naturwissenschaften 72:324–326.

    Article  CAS  Google Scholar 

  • Byers, J. A., Birgersson, G., Löfqvist, J., and Bergström, G. 1988. Synergistic pheromones and monoterpenes enable aggregation and host recognition by a bark beetle, Pityogenes chalcographus. Naturwissenschaften 75:153–155.

    Article  CAS  Google Scholar 

  • Cognato, A. I., Sun, J. H., Anducho-Reyes, M. A., and Owen, D. R. 2005. Genetic variation and origin of red turpentine beetle (Dendroctonus valens LeConte) introduced to the People’s Republic of China. Agric. For. Entomol. 7:87–94.

    Article  Google Scholar 

  • Cook, S. P. and Hain, F. P. 1988. Toxicity of host monoterpenes to Dendroctonus frontalis and Ips calligraphus. J. Entomol. Sci. 23:287–290.

    CAS  Google Scholar 

  • Critchfield, W. B. and Little, E. L. 1966. Geographic distribution of pines of the world. USDA Forest Service Misc. Pub. 991, Washington, DC.

  • Eaton, B. and Rodríguez Lara, R. 1967. Red turpentine beetle, Dendroctonus valens LeConte, pp. 21–24, in A.G. Davidson and R.M. Prentice (eds.). Important Forest Insects and Diseases of Mutual Concern to Canada, the United States and Mexico. Can. Dept. For. And Rural Dev., Ottawa.

  • Erbilgin, N. and Raffa, K. F. 2000. Opposing effects of host monoterpenes on responses by two sympatric species of bark beetles to their aggregation pheromones. J. Chem. Ecol. 26:2527–2548.

    Article  CAS  Google Scholar 

  • Erbilgin, N. and Raffa, K. F. 2002. Association of declining red pine stands with reduced populations of bark beetle predators, seasonal increases in root colonizing insects, and incidence of root pathogens. For. Ecol. Manag. 164:221–236.

    Article  Google Scholar 

  • Erbilgin, N., Szele, A., Klepzig, K. D., and Raffa, K. F. 2001. Trap type, chirality of α-pinene, and geographic region affect sampling efficiency of root and lower stem insects in pine. J. Econ. Entomol. 94:1113–1121.

    Article  PubMed  CAS  Google Scholar 

  • Fettig, C. J., Borys, R. R., Cluck, D. R., and Smith, S. L. 2004. Field response of Dendroctonus valens (Coleoptera: Scolytidae) and a major predator, Temnochila chlorodia (Coleoptera: Trogositidae), to host kairomones and a Dendroctonus spp. pheromone component. J. Entomol. Sci. 39:490–499.

    CAS  Google Scholar 

  • Furniss, R. L. and Carolin, V. M. 1977. Western forest insects. USDA Forest Service Misc. Publ. 1339.

  • Futuyma, D. J., Keese, M. C., and Funk, D. J. 1995. Genetic constrains on macroevolution: The evolution of host affiliation in leaf beetle genus Ophraella. Evolution 49:797–809.

    Article  Google Scholar 

  • Hendry, L. B., Piatek, B., Browne, L. E., Wood, D. L., Byers, J. A., Fish, R. H., and Hicks, R. A. 1980. In vivo conversion of a labeled host plant chemical to pheromones of the bark beetle Ips paraconfusus. Nature 248:485.

    Article  Google Scholar 

  • Hobson, K. R., Wood, D. L., Cool, L. G., White, P. R., Ohtsuka, T., Kubo, I., and Zavarin, E. 1993. Chiral specificity in responses by the bark beetle Dendroctonus valens to host kairomones. J. Chem. Ecol. 19:1837–1847.

    Article  CAS  Google Scholar 

  • Hoel, P. G., Port, S. C., and Stone, C. J. 1971. Introduction to Statistical Theory. Houghton Mifflin, Boston.

    Google Scholar 

  • Hughes, P. R. 1974. Myrcene: A precursor of pheromones in Ips beetles. J. Insect Physiol. 20:1271–1275.

    Article  CAS  Google Scholar 

  • Ivarsson, P., Blomquist, G. T., and Seybold, S. J. 1997. In vitro production of the pheromone intermediates ipsdienone and ipsenone localized in the metathorax of Ips paraconfusus Lanier (Coleoptera: Scolytidae). Naturwissenschaften 84:454–457.

    Article  CAS  Google Scholar 

  • Jin, Y. J., Wu, J. K., Sun, F., Deng, W. H., Wang, H. J., and Sun, W. C. 1994. Terpene composition of needle oil from Pinus tabulaeformis and the composition of other two-needle pines. J. Beijing For. Univ. 16:39–47.

    Google Scholar 

  • Juuti, S., Arey, J., and Atkinson, R. 1990. Monoterpene emission rate measurements from a Monterey pine. J. Geophys. Res. 95:7515–7519.

    Article  CAS  Google Scholar 

  • Kelley, S. T. and Farrell, B. D. 1998. Is specialization a dead end? The phylogeny of host use in Dendroctonus bark beetles (Scolytidae). Evolution 52:1731–1743.

    Article  CAS  Google Scholar 

  • Klepzig, K. D., Kruger, E. L., Smalley, E. B., and Raffa, K. F. 1995. Effects of biotic and abiotic stress on the induced accumulation of terpenes and phenolics in red pines inoculated with a bark beetle vectored fungus. J. Chem. Ecol. 21:601–626.

    Article  CAS  Google Scholar 

  • Klepzig, K. D., Smalley, E. B., and Raffa, K. F. 1996. Combined chemical defenses against insects and fungi associated with a forest decline disease. J. Chem. Ecol. 22:1376–1388.

    Article  Google Scholar 

  • Lanne, B. S., Schlyter, F., Byers, J. A., Löfqvist, J., Leufvén, A., Bergström, G., Van Der Pers, J. N. C., Unelius, R., Baeckström, P., and Norin, T. 1987. Differences in attraction to semiochemicals present in sympatric pine shoot beetles, Tomicus minor and T. piniperda. J. Chem. Ecol. 13:1045–1067.

    Article  CAS  Google Scholar 

  • Li, J. S., Chang, G. B., Song, Y. S., Wang, Y. W., and Chang, B. S. 2001. Control project on red turpentine beetle (Dendroctonus valens). For. Pest Dis. 4:41–44.

    Google Scholar 

  • Lorio, P., Stephen, F. M., and Paine, T. D. 1995. Environment and ontogeny modify loblolly pine response to induced water deficits and bark beetle attack. For. Ecol. Man. 73:97–110.

    Article  Google Scholar 

  • McCulloch, C. E. and Searle, S. R. 2001. Generalized, Linear, and Mixed Models. John Wiley & Sons, New York, 325 pp.

    Google Scholar 

  • Miller, R. G. Jr. 1991. Simultaneous Statistical Inference. Springer-Verlag, New York.

    Google Scholar 

  • Miller, D. R, and Borden, J. H. 2000. Dose-dependent and species-specific responses of pine bark beetles (Coleoptera: Scolytidae) to monoterpenes in association with pheromones. Can. Entomol. 132:183–195.

    Google Scholar 

  • Miller, D. R. and Borden, J. H. 2003. Responses of Ips pini (Say), Pityogenes knechteli Swaine and associated beetles (Coleoptera) to host monoterpenes in stands of Lodgepole pine. J. Entomol. Sci. 38:602–611.

    CAS  Google Scholar 

  • Miller, D. R., Gibson, K. E., Raffa, K. F., Seybold, S. J., Teale, S. A., and Wood, D. L. 1997. Geographic variation in response of pine engraver, Ips pini, and associated species to pheromone, lanierone. J. Chem. Ecol. 23:2013–2031.

    Article  CAS  Google Scholar 

  • Mirov, N. T. 1961. Composition of gum turpentines of pines. USDA For. Serv. Tech. Bull. No. 1239.

  • Owen, D. R., Wood, D. L., and Parmeter, J. R. Jr. 2005. Association between Dendroctonus valens (Coleoptera: Scolytidae) and blackstain root disease (Leptographium wageneri) on ponderosa pine in California. Can. Entomol. 137:367–375.

    Article  Google Scholar 

  • Paine, T. D. and Stephen, F. M. 1987. Fungi associated with the southern pine beetle: Avoidance of induced defense response in loblolly pine. Oecologia 74:377–379.

    Article  Google Scholar 

  • Pureswaran, J. H., Gries R. and Borden J. H. 2004a. Quantitative variation in monoterpenes in four species of conifers. Biochem. System. Ecol. 32:1109–1136.

    Article  CAS  Google Scholar 

  • Pureswaran, J. H., Gries R. and Borden J. H. 2004b. Antennal responses of four species of tree-killing bark beetles (Coleoptera: Scolytidae) to volatiles collected from beetles, and their host and nonhost conifers. Chemoecology 14:59–66.

    Article  CAS  Google Scholar 

  • Raffa, K. F. and Smalley, E. B. 1995. Interactions of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle–fungal complexes. Oecologia 102:285–295.

    Article  Google Scholar 

  • Rappaport, N. G., Owen, D. R., and Stein, J. D. 2001. Interruption of semiochemical-mediated attraction of Dendroctonus valens (Coleoptera: Scolytidae) and selected nontarget insects by verbenone. Environ. Entomol. 30:837–841.

    CAS  Google Scholar 

  • Reeve, J. D. and Strom, B. L. 2004. Statistical problems encountered in trapping studies of scolytids and associated insects. J. Chem. Ecol. 30:1575–1590.

    Article  PubMed  CAS  Google Scholar 

  • Renwick, J. A. A., Hughes, P. R., and Krull, I. S. 1976. Selective production of cis- and trans-verbenol from (−) and (+)-α-pinene by a bark beetle. Science 191:199–201.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., With, K. A., Baughman, S., Cabin, R. J., Cohen, J. E., Ellstrand, M. C., McCauley, D. E., O’neil, P., Parker, I. M., Thompson, J. N., and Weller, S. G. 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32:305–332.

    Article  Google Scholar 

  • SAS Institute, Inc. 2005. SAS Procedures Guide, version 9.1. Cary, NC, USA.

  • Schade, G. W. and Goldstein, A. H. 2003. Increase of monoterpene emissions from a pine plantation as a result of mechanical disturbances. Geophys. Res. Let. 30:1380–1383.

    Article  CAS  Google Scholar 

  • Schlyter, F. and Birgersson, G. 1999. Forest beetles, pp. 113–148, in R. J. Hardie and A. K. Minks (eds.). Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants. CAB International, Wallingford, UK.

    Google Scholar 

  • Seybold, S. J., Ohtsuka, T., Wood, D. L., and Kubo, I. 1995a. Enantiomeric composition of ipsdienol: A chemotaxonomic character for North American populations of Ips spp. in the pini subgeneric group (Coleoptera: Scolytidae). J. Chem. Ecol. 21:995–1016.

    Article  CAS  Google Scholar 

  • Seybold, S. J., Quilici, D. R., Tillman, J. A., Vanderwel, D., Wood, D. L., and Blomquist, G. J. 1995b. De novo biosynthesis of the aggregation pheromone components ipsenol and ipsdienol by the pine engraver beetles Ips paraconfusus Lanier and Ips pini (Say) (Coleoptera: Scolytidae). Proc. Natl. Acad. Sci. USA 92:8393–8397.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. H. 1961. Red turpentine beetle. USDA For. Pest Leafl. 55.

  • Smith, R. H. 2000. Xylem monoterpenes of pines: Distribution, Variation, Genetics, Function. USDA Forest Service Techl. Bull. PSW-GTR No. 177.

  • Sturgeon, K. B. and Mitton, J. B. 1982. Evolution of bark beetle communities, pp. 350–384, in J. B. Mitton and K. B. Sturgeon (eds.). Bark Beetles in North American Conifers. A System for the Study of Evolutionary Biology. University of Texas Press, Austin, TX, USA.

    Google Scholar 

  • Sun, J. H., Miao, Z. W., Zhang, Z., Zhang, Z. N., and Gillette, N. E. 2004. Red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Scolytidae), response to host semiochemicals in China Environ. Entomol. 33:206–212.

    Article  CAS  Google Scholar 

  • Visser, J. H. 1986. Host odor perception in phytophagous insects. Ann. Rev. Entomol. 31:121–144.

    Article  Google Scholar 

  • Wallin, K. F. and Raffa, K. F. 1999. Altered constitutive and inducible phloem monoterpenes following natural defoliation of jack pine: Implications to host mediated inter-guild interactions and plant defense theories. J. Chem. Ecol. 25:861–880.

    Article  CAS  Google Scholar 

  • White, P. R. and Hobson, K. R. 1993. Stereospecific antennal response by the red turpentine beetle, Dendroctonus valens, to chiral monoterpenes from ponderosa pine resin. J. Chem. Ecol. 19:2193–2202.

    Article  CAS  Google Scholar 

  • Wilt, F. M., Miller, G. C., Everett, R. L., and Hackett, M. 1993. Monoterpene concentrations in fresh, senescent, and decaying foliage of single-leaf pinyon (Pinus monophylla Torr. & Frem.: Pinaceae) from the western Great Basin. J. Chem. Ecol. 19:185–194.

    Article  CAS  Google Scholar 

  • Wolfram, S. 1999. The Mathematica Book, 4th ed. Wolfram Media/Cambridge University Press, Champaign, IL, USA.

    Google Scholar 

  • Wood, D. L. 1982a. The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Annu. Rev. Entomol. 27:411–446.

    Article  CAS  Google Scholar 

  • Wood, S. L. 1982b. The Bark and Ambrosia Beetles of North and Central America Coleoptera: Scolytidae), a Taxonomic Monograph. Great Basin Nat. Memoirs No. 6, Brigham Young University, 1359 pp.

  • Zhang, Q. H. and Schlyter, F. 2004. Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agric. For. Entomol. 6:1–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the USDA Forest Service, Forest Health Technology Enterprise Team (Morgantown, WV, USA), the National Natural Science Foundation of China (Project 30471403 and 30525009), the College of Natural Resources, University of California, Berkeley, and the College of Agricultural and Life Sciences, University of Wisconsin, Madison, Universidad Autonóma Chapingo (Texcoco, Mexico), and the Chinese Academy of Sciences, Institute of Zoology (Beijing, China). We thank C.R. Rudolph (USDA Forest Service, Placerville, CA, USA), K. Bischel (USDA Forest Service, Berkeley, CA, USA), R. Acciavatti (USDA Forest Service, Morgantown, WV, USA), R. Murphy and M. McMahon (Department of Entomology, University of Wisconsin, Madison, WI, USA), S. Dahir (Wisconsin Department of Natural Resources, Madison, WI, USA) and D. Koenig (Carnegie Museum of Natural History, Pittsburgh, PA) for laboratory and field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Gillette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erbilgin, N., Mori, S.R., Sun, J.H. et al. Response to Host Volatiles by Native and Introduced Populations of Dendroctonus valens (Coleoptera: Curculionidae, Scolytinae) in North America and China. J Chem Ecol 33, 131–146 (2007). https://doi.org/10.1007/s10886-006-9200-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9200-2

Keywords

Navigation