Skip to main content
Log in

Long-Time Existence for Semi-linear Beam Equations on Irrational Tori

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider the semi-linear beam equation on the d dimensional irrational torus with smooth nonlinearity of order \(n-1\) with \(n\ge 3\) and \(d\ge 2\). If \(\varepsilon \ll 1\) is the size of the initial datum, we prove that the lifespan \(T_\varepsilon \) of solutions is \(O(\varepsilon ^{-A(n-2)^-})\) where \(A\equiv A(d,n)= 1+\frac{3}{d-1}\) when n is even and \(A= 1+\frac{3}{d-1}+\max (\frac{4-d}{d-1},0)\) when n is odd. For instance for \(d=2\) and \(n=3\) (quadratic nonlinearity) we obtain \(T_\varepsilon =O(\varepsilon ^{-6^-})\), much better than \(O(\varepsilon ^{-1})\), the time given by the local existence theory. The irrationality of the torus makes the set of differences between two eigenvalues of \(\sqrt{\Delta ^2+1}\) accumulate to zero, facilitating the exchange between the high Fourier modes and complicating the control of the solutions over long times. Our result is obtained by combining a Birkhoff normal form step and a modified energy step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Actually there are papers in which such procedure is iterated. We quote for instance [15] and reference therein.

  2. When you have a control of the small divisors involving only \(\mu _3(j)\) then you can solve the homological equation at any order and you obtain an almost global existence result in the spirit of [2]. This would be the case if we consider the semi-linear beam equation on the squared torus \({\mathbb {T}}^d\).

  3. Notice that there is no resonant term of odd order by Proposition 2.2, in other words \(Z_3=Z_5=0\).

  4. In fact in Sect. 4, for the sake of simplicity, we prefer to apply a modified energy strategy to all the terms of \(Q_6\) (see also Remark 1.2).

  5. i.e. \(\forall k,\ell \in \llbracket 1,r \rrbracket , \ k\ne \ell \Rightarrow \ j_{k}\ne j_{\ell }\).

  6. see Definition 2.1.

References

  1. Bambusi, D.: Birkhoff normal form for some nonlinear PDEs. Commun. Math. Phys. 234, 253–283 (2003)

    Article  MathSciNet  Google Scholar 

  2. Bambusi, D., Grébert, B.: Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J. 135(3), 507–567 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bambusi, D., Delort, J.M., Grébert, B., Szeftel, J.: Almost global existence for Hamiltonian semi-linear Klein–Gordon equations with small Cauchy data on Zoll manifolds. Commun. Pure Appl. Math. 60, 1665–1690 (2007)

    Article  Google Scholar 

  4. Bambusi, D., Grébert, B., Maspero, A., Robert, D.: Growth of Sobolev norms for abstract linear Schrödinger equations. To appear in JEMS, (2020)

  5. Bernier, J.: Bounds on the growth of high discrete Sobolev norms for the cubic discrete nonlinear Schrödinger equations on \(h{\mathbb{Z}}\). Discret. Contin. Dyn. Syst. A 39(6), 3179–3195 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bernier, J., Faou, E., Grébert, B.: Long time behavior of the solutions of NLW on the \(d\)-dimensional torus. Forum Math. Sigma 8, 12 (2020)

    Article  MathSciNet  Google Scholar 

  7. Berti, M., Delort, J.M.: Almost global solutions of capillary-gravity water waves equations on the circle. In: UMI Lecture Notes (2017)

  8. Berti, M., Feola, R., Pusateri, F.: Birkhoff normal form and long time existence for periodic gravity water waves (2018). Preprint at arXiv:1810.11549

  9. Berti, M., Feola, R., Franzoi, L.: Quadratic life span of periodic gravity-capillary water waves. Water Waves (2020). https://doi.org/10.1007/s42286-020-00036-8

    Article  Google Scholar 

  10. Berti, M., Feola, R., Pusateri, F.: Birkhoff normal form for gravity water waves. Water Waves (2020). https://doi.org/10.1007/s42286-020-00024-y

    Article  Google Scholar 

  11. Bourgain, J.: Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations. Geom. Funct. Anal. 6(2), 201–230 (1996)

    Article  MathSciNet  Google Scholar 

  12. Bourgain, J.: Growth of Sobolev norms in linear Schrödinger equations with quasi-periodic potential. Commun. Math. Phys. 204(1), 207–247 (1999)

    Article  Google Scholar 

  13. Delort, J.M.: On long time existence for small solutions of semi-linear Klein–Gordon equations on the torus. J. d’Analyse Mathèmatique 107, 161–194 (2009)

    Article  MathSciNet  Google Scholar 

  14. Delort, J.M.: Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds. Int. Math. Res. Not. 12, 2305–2328 (2010)

    MATH  Google Scholar 

  15. Delort, J.M.: Quasi-linear perturbations of Hamiltonian Klein–Gordon equations on spheres. Am. Math. Soc. (2015). https://doi.org/10.1090/memo/1103

    Article  MATH  Google Scholar 

  16. Delort, J.M., Imekraz, R.: Long time existence for the semi-linear Klein-Gordon equation on a compact boundaryless Riemannian manifold. Commun. PDE 42, 388–416 (2017)

    Article  Google Scholar 

  17. Eliasson, H.: Perturbations of linear quasi-periodic systems. In: Dynamical Systems and Small Divisors (Cetraro, Italy, 1998). Lect. Notes Math., vol. 1784, pp. 1–60. Springer, Berlin (2002)

  18. Fang, D., Zhang, Q.: Long-time existence for semi-linear Klein–Gordon equations on tori. J. Differ. Equ. 249, 151–179 (2010)

    Article  MathSciNet  Google Scholar 

  19. Faou, E., Grébert, B.: A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus. Anal. PDE 6(6) (2013)

  20. Feola, R., Grébert, B., Iandoli, F.: Long time solutions for quasi-linear Hamiltonian perturbations of Schrödinger and Klein–Gordon equations on tori. Preprint. arXiv:2009.07553 (2020)

  21. Feola, R., Iandoli, F.: A non-linear Egorov theorem and Poincaré–Birkhoff normal forms for quasi-linear pdes on the circle. Preprint. arXiv:2002.12448 (2020)

  22. Feola, R., Iandoli, F.: Long time existence for fully nonlinear NLS with small Cauchy data on the circle. Annali della Scuola Normale Superiore di Pisa (Classe di Scienze). To appear (2019). https://doi.org/10.2422/2036-2145.201811-003

  23. Grébert, B.: Birkhoff normal form and Hamiltonian PDEs. Séminaires et Congrès 15, 3067–3102 (2016)

    Google Scholar 

  24. Grébert, B., Imekraz, R., Paturel, E.: Normal forms for semilinear quantum harmonic oscillators. Commun. Math. Phys 291, 763–798 (2009)

    Article  MathSciNet  Google Scholar 

  25. Imekraz, R.: Long time existence for the semi-linear beam equation on irrational tori of dimension two. Nonlinearity 29, 1–46 (2007)

    MathSciNet  Google Scholar 

  26. Ionescu, A.D., Pusateri, F.: Long-time existence for multi-dimensional periodic water waves. Geom. Funct. Anal. 29, 811–870 (2019)

    Article  MathSciNet  Google Scholar 

  27. Moser, J.: A rapidly convergent iteration method and non-linear partial differential equations—I. Ann. Sc. Norm. Sup. Pisa Cl. Sci. III Ser. 20(2), 265–315 (1966)

  28. Pausader, B.: Scattering and the Levandosky–Strauss conjecture for fourth-order nonlinear wave equations. J. Differ. Equ. 241(2), 237–278 (2007)

    Article  MathSciNet  Google Scholar 

  29. Zhang, Q.: Long-time existence for semi-linear Klein–Gordon equations with quadratic potential. Commun. Partial Differ. Equ. 35(4), 630–668 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Grébert.

Additional information

Communicated by Yingfei Yi.

In memory of Walter Craig whose beautiful voice, always relevant and friendly, we miss.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Felice Iandoli has been supported by ERC grant ANADEL 757996. Roberto Feola, Joackim Bernier and Benoit Grébert have been supported by the Centre Henri Lebesgue ANR-11-LABX- 0020-01 and by ANR-15-CE40-0001-02 “BEKAM” of the ANR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernier, J., Feola, R., Grébert, B. et al. Long-Time Existence for Semi-linear Beam Equations on Irrational Tori. J Dyn Diff Equat 33, 1363–1398 (2021). https://doi.org/10.1007/s10884-021-09959-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-09959-3

Keywords

Mathematics Subject Classification

Navigation