Skip to main content
Log in

KAM for the nonlinear beam equation

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus

$$u_{tt}+\Delta^2 u+m u + \partial_u G(x,u)=0, \quad t \in {\mathbb{R}}, x \in {\mathbb{T}^d}, \quad (*)$$

where \({G(x,u)=u^4+ O(u^5)}\). Namely, we show that, for generic m, many of the small amplitude invariant finite dimensional tori of the linear equation \({(*)_{G=0}}\), written as the system

$$u_t=-v,\quad v_t=\Delta^2 u+mu,$$

persist as invariant tori of the nonlinear equation \({(*)}\), re-written similarly. The persisted tori are filled in with time-quasiperiodic solutions of \({(*)}\). If \({d\ge2}\), then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensional Hamiltonian PDEs behave in a chaotic way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.I. Arnold. Mathematical Methods in Classical Mechanics, 3rd edn. Springer, Berlin (2006).

  2. Bambusi D.: Birkhoff normal form for some nonlinear PDEs. Communications in Mathematical Physics 234, 253–283 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bambusi D., Grébert B.: Birkhoff normal form for PDE’s with tame modulus. Duke Mathematical Journal 135(3), 507–567 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berti M., Bolle P.: Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity 25, 2579–2613 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berti M., Bolle P.: Quasi-periodic solutions with Sobolev regularity of NLS on \({\mathbb{T}^d}\) and a multiplicative potential. Journal of the European Mathematical Society 15, 229–286 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bobenko A. I., Kuksin S. B.: The nonlinear Klein–Gordon equation on an interval as a perturbed Sine–Gordon equation. Commentarii Mathematici Helvetici 70, 63–112 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain J.: Construction of approximative and almost-periodic solutions of perturbed linear Schrödinger and wave equations. GAFA 6, 201–235 (1995)

    MATH  Google Scholar 

  8. Bourgain J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Shödinger equation. Annals of Mathematics 148, 363–439 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Bourgain. Green’s function estimates for lattice Schrödinger operators and applications. Annals of Mathematical Studies, Princeton (2004).

  10. Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Inventiones Mathematicae 181, 31–113 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Craig. Problèmes de Petits Diviseurs dans les Équations aux Dérivées Partielles. Panoramas et Synthèses, Société Mathématique de France (2000).

  12. Eliasson L.H.: Perturbations of stable invariant tori for Hamiltonian systems. Annali della Scoula Normale Superiore di Pisa 15, 115–147 (1988)

    MathSciNet  MATH  Google Scholar 

  13. L.H Eliasson. Perturbations of Linear Quasi-Periodic Systems. In: Dynamical Systems and Small Divisors (Cetraro, Italy, 1998), 1–60, Lect. Notes Math. 1784, Springer (2002).

  14. L.H Eliasson. Almost reducibility of linear quasi-periodic systems. In: Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), 679–705, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI (2001).

  15. L.H. Eliasson, B. Grébert and S.B. Kuksin. KAM for the non-linear Beam equation 1: small-amplitude solutions. arXiv:1412.2803v3.

  16. L.H. Eliasson, B. Grébert and S.B. Kuksin. KAM for the nonlinear beam equation 2: a normal form theorem. arXiv:1502.02262.

  17. Eliasson L.H., Kuksin S.B.: Infinite Töplitz–Lipschitz matrices and operators. Zeitschrift für angewandte Mathematik und Physik 59, 24–50 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eliasson L.H., Kuksin S.B.: On reducibility of Schrödinger equations with quasiperiodic in time potentials. Communications in Mathematical Physics 286(1), 125–135 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Eliasson L.H., Kuksin S.B.: KAM for the nonlinear Schrödinger equation. Annals of Mathematics 172, 371–435 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Grébert and É. Paturel. KAM for the Klein Gordon equation on \({\mathbb{S}^d}\), Bollettino dellUnione Matematica Italiana 9 (2016), 237–288.

  21. Geng J., Xu X., You J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Advances in Mathematics 226, 5361–5402 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Geng J., You J.: A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Communications in Mathematical Physics 262, 343–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Geng J., You J.: KAM tori for higher dimensional beam equations with constant potentials. Nonlinearity 19, 2405–2423 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. G. H. Hardy and E. M. Wright. An Introduction to the Theory of Number. Oxford University Press, Oxford (2008).

  25. Hörmander L.: Note on Hölder Estimates. The boundary problem of physical geodesy. Archive for Rational Mechanics and Analysis 62, 1–52 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Krantz and H. Parks. A Premier of Real Analytic Functions. Birkhäuser, Basel (2002).

  27. Kuksin S. B.: Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Functional Analysis and Its Applications 21, 192–205 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. S. B. Kuksin. Nearly Integrable Infinite-dimensional Hamiltonian Systems. Lecture Notes in Mathematics, 1556. Springer, Berlin (1993).

  29. S. B. Kuksin. Analysis of Hamiltonian PDEs. Oxford University Press, Oxford (2000).

  30. Kuksin S. B., Pöschel J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Annals of Mathematics 143, 149–179 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Moser and C. L. Siegel. Lectures on Celestial Mechanics. Springer, Berlin (1971).

  32. Pöschel J.: Quasi-periodic solutions for a nonlinear wave equation. Commentarii Mathematici Helvetici 71, 269–296 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Procesi C., Procesi M.: A normal form of the nonlinear Schrdinger equation with analytic non–linearities. Communications in Mathematical Physics 312, 501–557 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Procesi C., Procesi M.: A KAM Algorithm for the Resonant Nonlinear Schrödinger Equation. Advances in Mathematics 272, 399–470 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. I. M. Vinogradov. An Introduction to the Theory of Numbers. Pergamon Press, London (1955).

  36. Wang W.-M.: Energy supercritical nonlinear Schrödinger equations: Quasiperiodic solutions. Duke Mathematical Journal 165, 1129–1192 (2016)

    MathSciNet  MATH  Google Scholar 

  37. You J.: Perturbations of lower dimensional tori for Hamiltonian systems. Journal of Differential Equations 152, 1–29 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei B. Kuksin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliasson, L.H., Grébert, B. & Kuksin, S.B. KAM for the nonlinear beam equation. Geom. Funct. Anal. 26, 1588–1715 (2016). https://doi.org/10.1007/s00039-016-0390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-016-0390-7

Keywords and phrases

Navigation