Skip to main content
Log in

Forced Symmetry-Breaking of Square Lattice Planforms

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Equivariant bifurcation theory has been used to study pattern formation in various physical systems modelled by E(2)-equivariant partial differential equations. The existence of spatially doubly periodic solutions with respect to the square lattice has been the focus of much research. Previous studies have considered the four- and eight-dimensional representation of the square lattice, where the symmetry of the model is perfect. Here we consider the forced symmetry-breaking of the group orbits of translation free axial planforms in the four- and eight-dimensional representations. This problem is abstracted to the study of the action of the symmetry group of the perturbation on the group orbit of solutions. A partial classification for the behaviour of the group orbits is obtained, showing the existence of heteroclinic cycles and networks between equilibria. Possible areas of application are discussed including Faraday waves and Rayleigh–Bénard convection. Subsequent studies will discuss other two- and three-dimensional lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crawford J.D. (1991). Surface wave in nonsquare containers with square symmetry. Phys. Rev. Lett. 67(4):441–444

    Article  MathSciNet  Google Scholar 

  2. Demircan A., Seehafer N. (2000). Nonlinear square patterns in Rayleigh–Bénard convection. Euro. Phys. Lett. 53(2): 202–208

    Article  Google Scholar 

  3. Dionne B., Golubitsky M. (1992). Planforms in two and three dimensions. Z. Angew. Math. Phys. 43(1):36–62

    Article  MATH  MathSciNet  Google Scholar 

  4. Dionne B., Silber M., and Skeldon A.C. (1997). Stability results for steady, spatially periodic planforms. Nonlinearity 10(2):321–353

    Article  MATH  MathSciNet  Google Scholar 

  5. Eckert K., Besterhorn M., and Thess A. (1998). Square cells in surfacetension-driven Bénard convection: experiment and theory. J. Fluid Mech. 356:155–197

    Article  MATH  MathSciNet  Google Scholar 

  6. Edwards W.S., and Fauve S. (1993). Parametrically excited quasicrystalline surface waves. Phys. Rev. E 47(2):788–791

    Article  Google Scholar 

  7. Edwards W.S., and Fauve S. (1994). Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 278:123–148

    Article  MathSciNet  Google Scholar 

  8. Fauve S., Kumar K., and Laroche C. (1992). Parametric instability of a liquid–vapor interface close to the critical point. Phys. Rev. Lett. 68(21):3160–3163

    Article  Google Scholar 

  9. Field M.J. (1980). Equivariant dynamical systems. Trans. Am. Math. Soc. 259(1):185–205

    Article  MATH  MathSciNet  Google Scholar 

  10. Gatermann, K. (2000). Symmetry package for maple, Ver. 3.2. Available at URL. http://www.zib.de/gatermann/symmetry.html.

  11. Golubitsky, M., and Schaeffer, D. G. (1985). Singularities and Groups in Bifurcation, Theory, Vol. I, Applied Mathematical Sciences Vol. 51. Springer-Verlag, New York

  12. Golubitsky M., and Stewart I. (2002). The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space, Progress in Mathematics Vol 200. Birkhäuser Verlag, Basel

    Google Scholar 

  13. Golubitsky M., Stewart I., Schaeffer D.G. (1988). Singularities and Groups in Bifurcation Theory, Vol II, Applied Mathematical Sciences vol 69. Springer-Verlag, New York

    Google Scholar 

  14. Gomes, M. G. M., Labouriau, I. S., and Pinho, E. M. (1999). Spatial hidden symmetries in pattern formation. In Pattern Formation in Continuous and Coupled Systems (Minneapolis, MN, 1998), IMA Math. Appl. Vol. 115, Springer-Verlag, New York, pp. 83–99.

  15. Hou C., and Golubitsky M. (1997). An example of symmetry breaking to heteroclinic cycles. J. Differ. Equations 133(1): 30–48

    Article  MATH  MathSciNet  Google Scholar 

  16. Hoyuelos M., Gian-Luca O., and Miguel M.S. (2003). Quantum correlations close to a square pattern forming instabiltity. Euro. Phys. J. D. 22(3):441–451

    Google Scholar 

  17. Juel A., Burgess J.M., McCormick W.D., Swift J.B., and Swinney H.L. (2000). Surface tension-driven convection patterns in two liquid layers. Phys. D 143:169–186

    Article  MATH  MathSciNet  Google Scholar 

  18. Kessler D.A., Koplik J., and Levine H. (1988). Pattern selection in fingered growth phenomena. Adv. Phys. 37:255–339

    Article  Google Scholar 

  19. Kirk V., and Silber M. (1994). A competition between heteroclinic cycles. Nonlinearity 7(6):1605–1621

    Article  MATH  MathSciNet  Google Scholar 

  20. Lauterbach R., Maier-Paape S., and Reissner E. (1996). A systematic study of heteroclinic cycles in dynamical systems with broken symmetries. Proc. R. Soc. Edinburgh Sect. A 126(4):885–909

    MATH  MathSciNet  Google Scholar 

  21. Lauterbach R., and Roberts M. (1992). Heteroclinic cycles in dynamical systems with broken spherical symmetry. J. Differ. Equations 100(1):22–48

    Article  MATH  MathSciNet  Google Scholar 

  22. Maier-Paape S., and Lauterbach R. (2000). Heteroclinic cycles for reaction diffusion systems by forced symmetry-breaking. Trans. Am. Math. Soc. 352(7):2937–2991

    Article  MATH  MathSciNet  Google Scholar 

  23. Maple (1998). Waterloo Maple Inc. Version 7.

  24. Melbourne I. (1999). Steady-state bifurcation with Euclidean symmetry. Trans. Am. Math. Soc. 351(4):1575–1603

    Article  MATH  MathSciNet  Google Scholar 

  25. Milner S. (1991). Square patterns and secondary instabilities in driven capillary waves. J. Fluid Mech. 225:81–100

    Article  MATH  MathSciNet  Google Scholar 

  26. Parker, M. J. (2003). Forced symmetry-breaking of Euclidean-equivariant partial differential equations, pattern formation and Turing instabilities. PhD thesis, University of Warwick.

  27. Schatz M.F., VanHook S.J., McCormick W.D., Swift J.B., and Swinney H.L. (1999). Time-independent square patterns in surface-tension-driven Bénard convection. Phys. Fluids 11(9):2577–2582

    Article  MathSciNet  Google Scholar 

  28. Swift, J. W. (1984). Bifurcation and symmetry in convection. PhD thesis, University of Berkeley.

  29. Tokaruk W., Molteno T.C.A., and Morris S. (2000). Bénard-marangoni convection in two layered liquids. Phys. Rev. Lett. 84:3590–3593

    Article  Google Scholar 

  30. Tufillaro N., Ramshankar R., and Gollub J. (1989). Order-disorder transition in capillary ripples. Phys. Rev. Lett. 62(4): 422–425

    Article  Google Scholar 

  31. Turing A.M. (1952). The chemical basis for morphogenesis. Philos. Trans. R. Soc. London B 327:37–72

    Article  Google Scholar 

  32. Wiggins S. (1990). Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics Vol 2. Springer-Verlag, New York

    Google Scholar 

  33. Zhang W., and Winñals J. (1996). Square patterns and quasi-patterns in weakly damped faraday waves. Phys. Rev. E 53:4283–4286

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Parker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, M.J., Gomes, M.G.M. & Stewart, I.N. Forced Symmetry-Breaking of Square Lattice Planforms. J Dyn Diff Equat 18, 223–255 (2006). https://doi.org/10.1007/s10884-005-9004-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-005-9004-z

Keywords

Navigation