Skip to main content
Log in

Rigorous Asymptotic Expansions for Critical Wave Speeds in a Family of Scalar Reaction-Diffusion Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

We investigate traveling wave solutions in a family of reaction-diffusion equations which includes the Fisher–Kolmogorov–Petrowskii–Piscounov (FKPP) equation with quadratic nonlinearity and a bistable equation with degenerate cubic nonlinearity. It is known that, for each equation in this family, there is a critical wave speed which separates waves of exponential decay from those of algebraic decay at one of the end states. We derive rigorous asymptotic expansions for these critical speeds by perturbing off the classical FKPP and bistable cases. Our approach uses geometric singular perturbation theory and the blow-up technique, as well as a variant of the Melnikov method, and confirms the results previously obtained through asymptotic analysis in [J.H. Merkin and D.J. Needham, (1993). J. Appl. Math. Phys. (ZAMP) A, vol. 44, No. 4, 707–721] and [T.P. Witelski, K. Ono, and T.J. Kaper, (2001). Appl. Math. Lett., vol. 14, No. 1, 65–73].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M. A., and Stegun, I. A. (eds.), (1974). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York, Ninth printing.

  2. Bender C.M., Orszag S.A. (1978). Advanced Mathematical Methods for Scientists and Engineers. Mc Graw-Hill, Inc., New York

    MATH  Google Scholar 

  3. Billingham J., Needham D.J. (1991). A note on the properties of a family of travelling-wave solutions arising in cubic autocatalysis. Dynam. Stabil. Sys. 6(1): 33–49

    Article  MATH  MathSciNet  Google Scholar 

  4. Britton N.F. (1986). Reaction-Diffusion Equations and Their Applications to Biology. Academic Press Inc., London

    MATH  Google Scholar 

  5. Carr, J. (1981). Applications of Centre Manifold Theory, volume 35, in Applied Mathematical Sciences. Springer-Verlag, New York.

  6. Casten R.G., Cohen H., Lagerstrom P.A. (1975). Perturbation analysis of an approximation to the Hodgkin-Huxley theory. Quart. Appl. Math. 32, 365–402

    MATH  MathSciNet  Google Scholar 

  7. Chow S.N., Lin X.B. (1990). Bifurcation of a homoclinic orbit with a saddle-node equilibrium. Diff. Int. Equ. 3(3): 435–466

    MATH  MathSciNet  Google Scholar 

  8. Chow S.N., Li C., Wang D. (1994). Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  9. Denkowska Z., Roussarie R. (1991). A method of desingularization for analytic two-dimensional vector field families. Bol. Soc. Bras. Mat. 22(1): 93–126

    Article  MATH  MathSciNet  Google Scholar 

  10. Diener M. (1994). The canard unchained or how fast/slow dynamical systems bifurcate. Math. Intelligencer 6(3): 38–49

    Article  MathSciNet  Google Scholar 

  11. Dumortier, F. (1993). Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations, In Schlomiuk, D. (ed.), Bifurcations and Periodic Orbits of Vector Fields, number 408 in NATO ASI Series C, Mathematical and Physical Sciences, Dordrecht, Kluwer Academic Publishers.

  12. Fenichel N. (1971). Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226

    Article  MATH  MathSciNet  Google Scholar 

  13. Fenichel N. (1979). Geometric singular perturbation theory for ordinary differential equations. J. Diff. Equs. 31(1): 53–98

    Article  MATH  MathSciNet  Google Scholar 

  14. Fisher R.A. (2000). The wave of advance of advantageous genes. Ann. Eugenics 7, 355–369

    Google Scholar 

  15. Guckenheimer J., Hoffman K., Weckesser W. (2000). Numerical computation of canards. Int. J. Bifur. Chaos Appl. Sci. Engrg. 10(12): 2669–2687

    Article  MATH  MathSciNet  Google Scholar 

  16. Jones, C. K. R. T. (1995). Geometric singular perturbation theory. In Dynamical Systems, volume 1609 of Springer Lecture Notes in Mathematics, Springer-Verlag, New York.

  17. Kolmogorov A.N., Petrowskii I.G., Piscounov N. (1997). Etude de l’équation de la diffusion avec croissance de la quantité de matiére et son application à un problème biologique. Moscow Univ. Math. Bull. 1, 1–25

    Google Scholar 

  18. Krupa M., Szmolyan P. (2001). Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions. SIAM J. Math. Anal. 33(2): 286–314

    Article  MATH  MathSciNet  Google Scholar 

  19. Merkin J.H., Needham D.J. (1993). Reaction-diffusion waves in an isothermal chemical system with general orders of autocatalysis and spatial dimension. J. Appl. Math. Phys. (ZAMP) A 44(4): 707–721

    Article  MATH  MathSciNet  Google Scholar 

  20. Murray J.D. (2002). Mathematical Biology, I: An Introduction, volume 17 of Interdisciplinary Applied Mathematics. Springer-Verlag, Berlin Heidelberg, third edition

    Google Scholar 

  21. Needham D.J., Barnes A.N. (1999). Reaction-diffusion and phase waves occurring in a class of scalar reaction-diffusion equations. Nonlinearity 12(1): 41–58

    Article  MATH  MathSciNet  Google Scholar 

  22. Robinson C. (1983). Sustained resonance for a nonlinear system with slowly varying coefficients. SIAM J. Math. Anal. 14(5): 847–860

    Article  MATH  MathSciNet  Google Scholar 

  23. Salam F.M.A. (1987). The Mel’nikov technique for highly dissipative systems. SIAM J. Appl. Math. 47(2): 232–243

    Article  MATH  MathSciNet  Google Scholar 

  24. Sherratt J.A., Marchant B.P. (1996). Algebraic decay and variable speeds in wavefront solutions of a scalar reaction-diffusion equation. IMA J. Appl. Math. 56(3): 289–302

    Article  MATH  MathSciNet  Google Scholar 

  25. Witelski T.P., Ono K., Kaper T.J. (2001). Critical wave speeds for a family of scalar reaction-diffusion equations. Appl. Math. Lett. 14(1): 65–73

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Popović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popović, N., Kaper, T.J. Rigorous Asymptotic Expansions for Critical Wave Speeds in a Family of Scalar Reaction-Diffusion Equations. J Dyn Diff Equat 18, 103–139 (2006). https://doi.org/10.1007/s10884-005-9002-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-005-9002-1

Keywords

Mathematics Subject Classification, 1991

Navigation