Skip to main content
Log in

Min-max and min-min stackelberg strategies with closed-loop information structure

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

This paper deals with the min-max and min-min Stackelberg strategies in the case of a closed-loop information structure. Two-player differential one-single stage games are considered with one leader and one follower. We first derive necessary conditions for the existence of the follower to characterize the best response set of the follower and to recast it, under weak assumptions, to an equivalent and more convenient form for expressing the constraints of the leader’s optimization problem. Under a standard strict Legendre condition, we then derive optimality necessary conditions for the leader of both min-max and min-min Stackelberg strategies in the general case of nonlinear criteria for finite time horizon games. This leads to an expression of the optimal controls along the associated trajectory. Then, using focal point theory, the necessary conditions are also shown to be sufficient and lead to cheap control. The set of initial states allowing the existence of an optimal trajectory is emphasized. The linear-quadratic case is detailed to illustrate these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Abou-Kandil and P. Bertrand, Analytical solution for an open-loop Stackelberg game. IEEE Trans. Automat. Control AC-30 (1985), 1222–1224.

    Article  MathSciNet  Google Scholar 

  2. H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank, Matrix Riccati equations in control and systems theory. Birkhäuser (2003).

  3. A. Aboussoror and P. Loridan, Strong–weak Stackelberg problems in finite-dimensional spaces. Serdica Math. J. 21 (1995), 151–170.

    MathSciNet  MATH  Google Scholar 

  4. _____, Existence of solutions of two-level optimization problems with nonunique lower-level solutions. J. Math. Anal. Appl. 254 (2001), 348–357.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Agrachev and J.-P. Gauthier, On subanalyticity of Carnot–Carathéodory distances. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), 359–382.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Agrachev and Yu. Sachkov, Control theory from the geometric viewpoint. Encycl. Math. Sci. 87, Springer-Verlag, Berlin–New York (2004).

    MATH  Google Scholar 

  7. A. Agrachev and A. Sarychev, Abnormal sub-Riemannian geodesics: Morse index and rigidity. Ann. Inst. H. Poincaré 13 (1996), 635–690.

    MathSciNet  MATH  Google Scholar 

  8. R. Axelrod, The evolution of cooperation. New York Basic Books (1984).

  9. A. Bagchi, Stackelberg differential games in economic models. Lect. Notes Control Inform. Sci. Springer-Verlag (1984).

  10. T. Ba,sar and A. Haurie, Feedback equilibria in differential games with structural and modal uncertainties. JAE Press Inc. Connecticut (1984).

  11. T. Başar and G. J. Olsder, Team-optimal closed-loop Stackelberg strategies in hierarchical control problems. Automatica 16 (1980), 409–414.

    Article  MATH  Google Scholar 

  12. _____, Dynamic noncooperative game theory. SIAM (1995).

  13. T. Başar and H. Selbuz, Closed-loop Stackelberg strategies with applications in the optimal control of multilevel systems. IEEE Trans. Automat. Control AC-24 (1979), 166–179.

    Google Scholar 

  14. T. Ba,sar and R. Srikant, A Stackelberg network game with a large number of followers. J. Optim. Theory Appl. 115 (2002), 479–490.

    Article  MathSciNet  Google Scholar 

  15. B. Bonnard and M. Chyba, The role of singular trajectories in control theory. Math. Appl. 40, Springer-Verlag (2003).

  16. B. Bonnard, L. Faubourg, and E. Trélat, Mécanique céleste et contrôle de systèèmes spatiaux. Math. Appl. 51, Springer-Verlag (2006).

  17. M. Breton, A. Alj, and A. Haurie, Sequential Stackelberg equilibria in two-person games. J. Optim. Theory Appl. 59 (1988), 71–97.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Buratto and G. Zaccour, Coordination of advertising strategies in a fashion licensing contract. J. Optim. Theory Appl. 142 (2009), 31–53.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Cesari, Optimization. Theory and applications. Problems with ordinary differential equations. Springer-Verlag, New York (1983).

    MATH  Google Scholar 

  20. B. Chen and P.-A. Zadrozny, An anticipative feedback solution for the infinite-horizon, linear-quadratic, dynamic, Stackelberg game. J. Econ. Dynam. Control, 26 (2002), 1397–1416.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. I. Chen and J. B. Cruz, Stackelberg solution for two-person games with biased information patterns. IEEE Trans. Automat. Control AC-17 (1972), 791–797.

    Article  Google Scholar 

  22. Y. Chitour, F. Jean, and E. Trélat, Propiétés génériques des trajectoires singulières. C. R. Math. Acad. Sci. Paris 337 (2003), 49–52.

    MathSciNet  MATH  Google Scholar 

  23. ______, Genericity results for singular curves. J. Differ. Geom. 73 (2006), 45–73.

    MATH  Google Scholar 

  24. ______, Singular trajectories of control-affine systems. SIAM J. Control Optim. 47 (2008), 1078–1095.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. B. Cruz, Survey of Nash and Stackelberg equilibrium strategies in dynamic games. Ann. Econ. Social Measurement 4 (1975), 339–344.

    Google Scholar 

  26. S. Dempe, Essays and surveys in global optimization. Springer-Verlag (2005), pp. 165–193.

  27. S. Dempe and N. Gadhi, Second-order optimality conditions for bilevel set optimization problems. J. Global Optim. 47 (2010), 233–245.

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Dockner, S. Jorgensen, N. V. Long, and G. Sorger, Differential games in economics and management science. Cambridge Univ. Press (2000).

  29. G. Freiling, G. Jank, and S. R. Lee, Existence and uniqueness of openloop stackelberg equilibria in linear-quadratic differential games. J. Optim. Theory Appl. 110 (2001), 515–544.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. W. Friedman, A non-cooperative equilibrium for supergames. Review Econ. Stud. 38 (1971), 1–12.

    Article  MATH  Google Scholar 

  31. X. He, A. Prasad, S. P. Sethi, and G. J. Gutierrez, A survey of Stackelberg differential game models in supply and marketing channels. J. Syst. Sci. Syst. Eng. 16 (2007), 385–413.

    Article  Google Scholar 

  32. M. Jungers, Matrix block formulation of closed-loop memoryless Stackelberg strategy for discrete-time games. In: Proc. 47th IEEE Conf. on Decision and Control, Cancun, Mexico, December 2008.

  33. M. Jungers and C. Oară, Anti-palindromic pencil formulation for openloop Stackelberg strategy in discrete-time. In: Proc. 19th Int. Symp. on Mathematical Theory of Networks and Systems (MTNS), Budapest, Hungary, July 2010, pp. 2265–2268.

  34. S. Lasaulce, Y. Hayel, R. E. Azouzi, and M. Debbah, Introducing hierarchy in energy games. IEEE Trans. Wireless Commun. 8 (2009), 3833–3843.

    Article  Google Scholar 

  35. E. Lee and L. Markus, Foundations of optimal control theory. Wiley, New York (1967).

    MATH  Google Scholar 

  36. G. Leitmann, On generalized Stackelberg strategies. J. Optim. Theory Appl. 26 (1978).

  37. D. Limebeer, B. Anderson, and H. Hendel, A Nash game approach to mixed H 2/H control. IEEE Trans. Automat. Control 39 (1994), 69– 82.

    Article  MathSciNet  MATH  Google Scholar 

  38. P. Loridan and J. Morgan, A theoretical approximation scheme for Stackelberg problems. J. Optim. Theory Appl. 61 (1989), 95–110.

    Article  MathSciNet  MATH  Google Scholar 

  39. ______, Weak via strong Stackelberg problem: New results. J. Global Optim. 8 (1996), 263–287.

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Mallozzi and J. Morgan, Existence of a feedback equilibrium for twostage Stackelberg games. IEEE Trans. Automat. Control 42 (1997), 1612–1614.

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Medanic, Closed-loop Stackelberg strategies in linear-quadratic problems. IEEE Trans. Automat. Control 23 (1978), 632–637.

    Article  MATH  Google Scholar 

  42. P.-Y. Nie, Dynamic Stackelberg games under open-loop complete information. J. Franklin Inst., 342 (2005), 737–748.

    Article  MathSciNet  MATH  Google Scholar 

  43. P.-Y. Nie, L.-H. Chen, and M. Fukushima, Dynamic programming approach to discrete time dynamic feedback Stackelberg games with independent and dependent followers. Eur. J. Oper. Res. 169 (2006), 310–328.

    Article  MathSciNet  MATH  Google Scholar 

  44. P.-Y. Nie, M.-Y. Lai, and S.-J. Zhu, Dynamic feedback Stackelberg games with nonunique solutions. Nonlin. Anal. 69 (2008), 1904–1913.

    Article  MathSciNet  MATH  Google Scholar 

  45. A.-J. Novak, G. Feichtinger, and G. Leitmann, A differential game related to terrorism: Nash and Stackelberg strategies. J. Optim. Theory Appl., 144 (2010), 533–555.

    Article  MathSciNet  MATH  Google Scholar 

  46. G. P. Papavassilopoulos and J. B. Cruz, Nonclassical control problems and Stackelberg games. IEEE Trans. Automat. Control 24 (1979), 155–166.

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Simaan and J. B. Cruz, Additional aspects of the Stackelberg strategy in nonzero-sum games. J. Optim. Theory Appl. 11 (1973), 613–626.

    Article  MathSciNet  MATH  Google Scholar 

  48. ______, On the Stackelberg strategy in nonzero-sum games. J. Optim. Theory Appl. 11 (1973), 533–555.

    Article  MathSciNet  MATH  Google Scholar 

  49. A. W. Starr and Y. C. Ho, Further properties of nonzero-sum differential games. J. Optim. Theory Appl. 3 (1969), 207–219.

    Article  MathSciNet  MATH  Google Scholar 

  50. ______, Nonzero-sum differential games. J. Optim. Theory Appl. 3 (1969), 184–206.

    Article  MathSciNet  MATH  Google Scholar 

  51. B. Tolwinski, Closed-loop Stackelberg solution to a multistage linearquadratic game. J. Optim. Theory Appl., 34 (1981), 485–501.

    Article  MathSciNet  MATH  Google Scholar 

  52. ______, A Stackelberg solution of dynamic games. IEEE Trans. Automat. Control 28 (1983), 85–93.

    Article  MathSciNet  MATH  Google Scholar 

  53. E. Trélat, Asymptotics of accessibility sets along an abnormal trajectory. ESAIM Control Optim. Calc. Var. 6 (2001), 387–414.

    Article  MathSciNet  MATH  Google Scholar 

  54. ______, Contrôle optimal: théorie et applications. Vuibert (2005).

  55. L. N. Vicente and P. H. Calamai, Bilevel and multilevel programming: a bibliography review. J. Global Optim. 5 (1994), 291–306.

    Article  MathSciNet  MATH  Google Scholar 

  56. H. von Stackelberg, Marktform und Gleichgewicht. Springer-Verlag, Berlin (1934).

    Google Scholar 

  57. X. Yashan, Stackelberg equilibirums of open-loop differential games. In: Proc. 26th Chinese Control Conf., Zhangjiajie, Hunan, China, July 2007, pp. 446–450.

  58. J. J. Ye, Optimal strategies for bilevel dynamic problems. SIAM J. Control Optim. 35 (1997), 512–531.

    Article  MathSciNet  MATH  Google Scholar 

  59. K. Zhou, J. C. Doyle, and K. Glover, Robust and optimal control. Prentice Hall, New Jersey (1996).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jungers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungers, M., Trelat, E. & Abou-kandil, H. Min-max and min-min stackelberg strategies with closed-loop information structure. J Dyn Control Syst 17, 387–425 (2011). https://doi.org/10.1007/s10883-011-9123-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-011-9123-2

Key words and phrases

2000 Mathematics Subject Classification

Navigation