Skip to main content
Log in

The effects of cardiac output and pulmonary arterial hypertension on volumetric capnography derived-variables during normoxia and hypoxia

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

The aim of this study was to test the effect of cardiac output (CO) and pulmonary artery hypertension (PHT) on volumetric capnography (VCap) derived-variables. Nine pigs were mechanically ventilated using fixed ventilatory settings. Two steps of PHT were induced by IV infusion of a thromboxane analogue: PHT25 [mean pulmonary arterial pressure (MPAP) of 25 mmHg] and PHT40 (MPAP of 40 mmHg). CO was increased by 50 % from baseline (COup) with an infusion of dobutamine ≥5 μg kg−1 min−1 and decreased by 40 % from baseline (COdown) infusing sodium nitroglycerine ≥30 μg kg−1 min−1 plus esmolol 500 μg kg−1 min−1. Another state of PHT and COdown was induced by severe hypoxemia (FiO2 0.07). Invasive hemodynamic data and VCap were recorded and compared before and after each step using a mixed random effects model. Compared to baseline, the normalized slope of phase III (SnIII) increased by 32 % in PHT25 and by 22 % in PHT40. SnIII decreased non-significantly by 4 % with COdown. A combination of PHT and COdown associated with severe hypoxemia increased SnIII by 28 % compared to baseline. The elimination of CO2 per breath decreased by 7 % in PHT40 and by 12 % in COdown but increased only slightly with COup. Dead space variables did not change significantly along the protocol. At constant ventilation and body metabolism, pulmonary artery hypertension and decreases in CO had the biggest effects on the SnIII of the volumetric capnogram and on the elimination of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aitken RS, Clark-Kennedy AE. On the fluctuation in the composition of the alveolar air during the respiratory cycle in muscular exercise. J Physiol. 1928;65:389–411.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Fletcher R, Jonson B, Cumming G, Brew J. The concept of deadspace with special reference to the single breath test for carbon dioxide. Br J Anaesth. 1981;53:77–88.

    Article  CAS  PubMed  Google Scholar 

  3. Breen PH, Isserles SA, Harrison BA, Roizen MF. Simple computer measurement of pulmonary VCO2 per breath. J Appl Physiol. 1992;72:2029–35.

    CAS  PubMed  Google Scholar 

  4. Breen PH, Mazumdar B, Skinner SC. Comparison of end-tidal PCO2 and average alveolar expired PCO2 during positive end-expiratory pressure. Anesth Analg. 1996;82:368–73.

    CAS  PubMed  Google Scholar 

  5. Fletcher R, Jonson B. Deadspace and the single breath test for carbon dioxide during anaesthesia and artificial ventilation. Effects of tidal volume and frequency of respiration. Br J Anaesth. 1984;56:109–19.

    Article  CAS  PubMed  Google Scholar 

  6. Maisch S, Reissmann H, Fuellekrug B, Weismann D, Rutkowski T, Tusman G, Bohm SH. Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients. Anesth Analg. 2008;106:175–81. doi:10.1213/01.ane.0000287684.74505.49.

    Article  PubMed  Google Scholar 

  7. Taskar V, John J, Larsson A, Wetterberg T, Jonson B. Dynamics of carbon dioxide elimination following ventilator resetting. Chest. 1995;108:196–202.

    Article  CAS  PubMed  Google Scholar 

  8. Kallet RH, Daniel BM, Garcia O, Matthay MA. Accuracy of physiologic dead space measurements in patients with acute respiratory distress syndrome using volumetric capnography: comparison with the metabolic monitor method. Respir Care. 2005;50:462–7.

    PubMed  Google Scholar 

  9. Tusman G, Areta M, Climente C, Plit R, Suarez-Sipmann F, Rodriguez-Nieto MJ, Peces-Barba G, Turchetto E, Bohm SH. Effect of pulmonary perfusion on the slopes of single-breath test of CO2. J Appl Physiol. 2005;99:650–5.

    Article  CAS  PubMed  Google Scholar 

  10. Burki NK. The dead space to tidal volume ratio in the diagnosis of pulmonary embolism. Am Rev Respir Dis. 1986;133:679–85.

    CAS  PubMed  Google Scholar 

  11. Tusman G, Bohm SH, Suarez-Sipmann F, Turchetto E. Alveolar recruitment improves ventilatory efficiency of the lungs during anesthesia. Can J Anaesth. 2004;51:723–7. doi:10.1007/BF03018433.

    Article  PubMed  Google Scholar 

  12. Bohm SH, Maisch S, von Sandersleben A, Thamm O, Passoni I, Martinez Arca J, Tusman G. The effects of lung recruitment on the Phase III slope of volumetric capnography in morbidly obese patients. Anesth Analg. 2009;109:151–9. doi:10.1213/ane.0b013e31819bcbb5.

    Article  PubMed  Google Scholar 

  13. Mosing M, Iff I, Hirt R, Moens Y, Tusman G. Evaluation of variables to describe the shape of volumetric capnography curves during bronchoconstriction in dogs. Res Vet Sci. 2012;93:386–92. doi:10.1016/j.rvsc.2011.05.014.

    Article  PubMed  Google Scholar 

  14. Crawford AB, Makowska M, Paiva M, Engel LA. Convection- and diffusion-dependent ventilation maldistribution in normal subjects. J Appl Physiol. 1985;59:838–46.

    CAS  PubMed  Google Scholar 

  15. Horsfield K, Cumming G. Functional consequences of airway morphology. J Appl Physiol. 1968;24:384–90.

    CAS  PubMed  Google Scholar 

  16. Verbanck S, Paiva M. Model simulations of gas mixing and ventilation distribution in the human lung. J Appl Physiol. 1990;69:2269–79.

    CAS  PubMed  Google Scholar 

  17. Tusman G, Suarez-Sipmann F, Bohm SH, Borges JB, Hedenstierna G. Capnography reflects ventilation/perfusion distribution in a model of acute lung injury. Acta Anaesthesiol Scand. 2011;55:597–606. doi:10.1111/j.1399-6576.2011.02404.x.

    Article  CAS  PubMed  Google Scholar 

  18. Tusman G, Scandurra A, Bohm SH, Suarez-Sipmann F, Clara F. Model fitting of volumetric capnograms improves calculations of airway dead space and slope of phase III. J Clin Monit Comput. 2009;23:197–206. doi:10.1007/s10877-009-9182-z.

    Article  PubMed  Google Scholar 

  19. Bohr C. Über die Lungenathmung. Centralblatt für Physiologie. 1887;1(14):236–68.

    Google Scholar 

  20. Enghoff H. Volumen inefficax. Bemerkungen zur Frage des schädlichen Raumes. Uppsala Lak Forhandl. 1938;44:191–218.

    Google Scholar 

  21. Tusman G, Sipmann FS, Bohm SH. Rationale of dead space measurement by volumetric capnography. Anesth Analg. 2012;114:866–74. doi:10.1213/ANE.0b013e318247f6cc.

    Article  PubMed  Google Scholar 

  22. Berggren SM. The oxygen deficit of arterial blood caused by non-ventilated parts of the lung. Acta Physiol Scand. 1942;4:4–9.

    Google Scholar 

  23. Stromberg NO, Gustafsson PM. Ventilation inhomogeneity assessed by nitrogen washout and ventilation-perfusion mismatch by capnography in stable and induced airway obstruction. Pediatr Pulmonol. 2000;29:94–102. doi:10.1002/(SICI)1099-0496(200002)29:2<94.

    Article  CAS  PubMed  Google Scholar 

  24. Downie SR, Salome CM, Verbanck S, Thompson B, Berend N, King GG. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation. Thorax. 2007;62:684–9. doi:10.1136/thx.2006.069682.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Tusman G, Gogniat E, Bohm SH, Scandurra A, Suarez-Sipmann F, Torroba A, Casella F, Giannasi S, Roman ES. Reference values for volumetric capnography-derived non-invasive parameters in healthy individuals. J Clin Monit Comput. 2013;27:281–8. doi:10.1007/s10877-013-9433-x.

    Article  PubMed  Google Scholar 

  26. Verschuren F, Liistro G, Coffeng R, Thys F, Roeseler J, Zech F, Reynaert M. Volumetric capnography as a screening test for pulmonary embolism in the emergency department. Chest. 2004;125:841–50.

    Article  PubMed  Google Scholar 

  27. Kline JA, Israel EG, Michelson EA, O’Neil BJ, Plewa MC, Portelli DC. Diagnostic accuracy of a bedside D-dimer assay and alveolar dead-space measurement for rapid exclusion of pulmonary embolism: a multicenter study. JAMA. 2001;285:761–8.

    Article  CAS  PubMed  Google Scholar 

  28. Glenny RW, Robertson HT. Fractal properties of pulmonary blood flow: characterization of spatial heterogeneity. J Appl Physiol. 1990;69:532–45.

    CAS  PubMed  Google Scholar 

  29. Glenny RW, Lamm WJ, Albert RK, Robertson HT. Gravity is a minor determinant of pulmonary blood flow distribution. J Appl Physiol. 1991;71:620–9.

    CAS  PubMed  Google Scholar 

  30. Hakim TS, Lisbona R, Dean GW. Gravity-independent inequality in pulmonary blood flow in humans. J Appl Physiol. 1987;63:1114–21.

    CAS  PubMed  Google Scholar 

  31. Hakim TS, Lisbona R, Dean GW. Effect of cardiac output on gravity-dependent and nondependent inequality in pulmonary blood flow. J Appl Physiol. 1989;66:1570–8.

    CAS  PubMed  Google Scholar 

  32. Presson RG Jr, Baumgartner WA Jr, Peterson AJ, Glenny RW, Wagner WW Jr. Pulmonary capillaries are recruited during pulsatile flow. J Appl Physiol. 2002;92:1183–90. doi:10.1152/japplphysiol.00845.2001.

    PubMed  Google Scholar 

  33. Wagner WW Jr, Latham LP. Pulmonary capillary recruitment during airway hypoxia in the dog. J Appl Physiol. 1975;39:900–5.

    PubMed  Google Scholar 

  34. Tusman G, Bohm SH, Suarez-Sipmann F, Scandurra A, Hedenstierna G. Lung recruitment and positive end-expiratory pressure have different effects on CO2 elimination in healthy and sick lungs. Anesth Analg. 2010;111:968–77. doi:10.1213/ANE.0b013e3181f0c2da.

    PubMed  Google Scholar 

  35. Fletcher R. Deadspace, invasive and non-invasive. Br J Anaesth. 1985;57:245–9.

    Article  CAS  PubMed  Google Scholar 

  36. Tusman G, Suarez-Sipmann F, Paez G, Alvarez J, Bohm SH. States of low pulmonary blood flow can be detected non-invasively at the bedside measuring alveolar dead space. J Clin Monit Comput. 2012;26:183–90. doi:10.1007/s10877-012-9358-9.

    Article  PubMed  Google Scholar 

  37. Putensen C, Rasanen J, Downs JB. Effect of endogenous and inhaled nitric oxide on the ventilation-perfusion relationships in oleic-acid lung injury. Am J Respir Crit Care Med. 1994;150:330–6. doi:10.1164/ajrccm.150.2.8049811.

    Article  CAS  PubMed  Google Scholar 

  38. Skimming JW, Banner MJ, Spalding HK, Jaeger MJ, Burchfield DJ, Davenport PW. Nitric oxide inhalation increases alveolar gas exchange by decreasing deadspace volume. Crit Care Med. 2001;29:1195–200.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Axon Lab (Instrumentation Laboratory, Axon Lab, Switzerland) and funded by a grant from the Forschungskredit of the University of Zürich, awarded to M. Mosing.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Standards

This study was approved by the Cantonal Veterinary Office of Zürich (176/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Mosing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosing, M., Kutter, A.P.N., Iff, S. et al. The effects of cardiac output and pulmonary arterial hypertension on volumetric capnography derived-variables during normoxia and hypoxia. J Clin Monit Comput 29, 187–196 (2015). https://doi.org/10.1007/s10877-014-9588-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-014-9588-0

Keywords

Navigation