Skip to main content
Log in

The influence of gender, hand dominance, and upper extremity length on motor evoked potentials

  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Motor evoked potentials (MEPs) induced through transcranial magnetic stimulation (TMS) are susceptible to several sources of variability including gender, hand dominance, and upper extremity length. Conflicting evidence on the relationship between MEPs and subject characteristics has been reported.

Objective

The purposes of this study were to determine if MEPs are different between genders and between right- and left-hand dominant subjects, and to determine if MEPs are correlated with upper extremity length.

Methods

Using a case–control design, we recorded MEPs from 45 healthy subjects (age 21.6 ± 2.0 years; 24 females, 21 males) with a MagStim200 stimulating coil positioned over the primary motor cortex. Evoked responses were recorded by surface EMG electrodes from the abductor pollicis brevis, abductor digiti minimi and first dorsal interosseous muscles contralateral to the site of TMS. Evoked responses were analyzed to determine motor thresholds, latencies and amplitudes. Central motor conduction time (CMCT) was estimated from MEP, M response, and F wave latencies.

Results

Gender and hand dominance did not significantly influence thresholds, MEP amplitudes, or CMCT (P > .05). MEP latencies were moderately correlated with upper extremity length (R = .62 right median, R = .50 left median, R = .45 right ulnar, R = .51 left ulnar MEP latency, P < .01). An ANCOVA using upper extremity length as the covariate demonstrated no significant differences between genders (Wilk’s λ = .89, F = 2.45, P = .10). After adjusting MEP latencies to upper limb length, no significant differences were observed between dominant and non-dominant limbs (F = .002, P = .97 median, and F = .03, P = .56 ulnar) nor between genders (F = 2.7, P = .11 median; F = .05, P = .82 ulnar).

Conclusions

Variability in MEP latencies between genders was due to differences in upper extremity length.

Adjusting MEP latencies to upper limb length is recommended for more accurate comparison and meaningful interpretation between subjects. Hand dominance and gender do not significantly influence motor thresholds, MEP amplitude, or CMCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toleikis JR, Sloan T, Ronai AK. Optimal transcranial magnetic stimulation sites for the assessment of motor function. Electroencephalogr Clin Neurophysiol. 1991;81:443–449.

    CAS  PubMed  Google Scholar 

  2. Chistyakov A, et al. Dissociation of somatosensory and motor evoked potentials in non-comatose patients after head injury. Clin Neurophysiol. 1999;110:1080–1089.

    Article  CAS  PubMed  Google Scholar 

  3. King P, Chiappa K. Motor evoked potentials. In: Chiappa K, editor. Evoked potentials in clinical medicine. New York, NY: Raven Press; 1990. p. 509–562.

    Google Scholar 

  4. Hallett M. Transcranial magnetic stimulation: a useful tool in clinical neurophysiology. Ann Neurol. 1996;40(3):344–354.

    Article  CAS  PubMed  Google Scholar 

  5. van der Kamp W, Zimmerman A, Ferrari MD, van Dijk JG. Cortical excitability and response variation of transcranial magnetiic stimulation. J Clin Neurophysiol. 1996;13(2):164–171.

    Article  PubMed  Google Scholar 

  6. Ghezzi A, Callea L, Zaffaroni M, Zibetti A, Montanini R. Study of central and peripheral conduction in normal subjects. Acta Neurol Scan. 1991;84(6):503–506.

    Article  CAS  Google Scholar 

  7. Mills K. Magnetic stimulation of the human nervous system. New York, NY: Oxford University Press; 1999.

    Google Scholar 

  8. Mills KR, Nithi K. Corticomotor threshold to magnetic stimulation: normal values and repeatability. Muscle Nerve. 1997;20:570–576.

    Article  CAS  PubMed  Google Scholar 

  9. VanDerKamp W, et al. Cortical excitability and response variation of transcranial magnetic stimulation. J Clin Neurophys. 1996;13(2):164–171.

    Article  CAS  Google Scholar 

  10. Chu N. Motor evoked potentials with magnetic stimulation: correlations with height. Electroencephalogr Clin Neurophysiol. 1989;74(6):481–485.

    Article  CAS  PubMed  Google Scholar 

  11. Furby A, Bourriez J, Jacquesson JM, Mounier-Vehier F, Guieu JD. Motor evoked potentials to magnetic stimulation: technical considerations and normative data from 50 subjects. J Neurol. 1992;239:152–156.

    Article  CAS  PubMed  Google Scholar 

  12. Triggs W, et al. Physiological motor asymmetry in human handedness: evidence from transcranial magnetic stimulation. Brain Res. 1994;636(2):270–276.

    Article  CAS  PubMed  Google Scholar 

  13. Macdonell RA, Shapiro B, Chiappa KH, Helmers SL, Cros D, Day BJ, Shahani BT. Hemispheric threshold differencs for motor evoked potentials produced by magnetic coil stimulation. Neurology. 1991;41:1441–1444.

    CAS  PubMed  Google Scholar 

  14. Eisen A, Shtybel W. AAEM minimonograph no. 35: clinical experience with transcranial magnetic stimulation. Muscle Nerve. 1990;13:995–1011.

    Article  CAS  PubMed  Google Scholar 

  15. Wochnik-Dyjas D, Glazowski C, Niewiadomska M. Segmental conduction times in the motor nervous system. Electroencephalogr Clin Neurophysiol. 1997;37:155–167.

    CAS  Google Scholar 

  16. Rossini PM, Caramia M, Zarola F. Central motor tract propagation in man: studies with non-invasive, unifocal, scalp stimulation. Brain Res. 1987;415:211–225.

    Article  CAS  PubMed  Google Scholar 

  17. Claus D. Central motor conduction: method and normal results. Muscle Nerve. 1990;13:1125–1132.

    Article  CAS  PubMed  Google Scholar 

  18. Ravnborg M, Dahl K. Examination of central and peripheral motor pathways by standardized magnetic stimulation. Acta Neurol Scan. 1991;84:491–497.

    Article  CAS  Google Scholar 

  19. Brasil-Neto J, et al. Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility. Electroencephalogr Clin Neurophysiol. 1992;85(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  20. Melvin J, Lighthall J, Ueno K. Brain injury biomechanics. In: Head and neck injury. Warrendale, PA: Society of Automotive Engineers, Inc., 1994, pp. 53–94.

  21. Rossini PM, Barker A, Berardelli A, Caramia MD, Dimitrijevic MR, Hallett M, Katayama Y, Lucking CH. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical appication. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91(2):79–92.

    Article  CAS  PubMed  Google Scholar 

  22. Conforto AB, et al. Impact of coil position and electophysiological monitoring on determination of motor thresholds to transcranial magnetic stimualtion. Clin Neurophysiol. 2004;115:812–819.

    Article  PubMed  Google Scholar 

  23. Mills KR, Boniface S, Schubert M. Magnetic brain stimulation with a double coil: the importance of coil orientation. Electroencephalogr Clin Neurophysiol. 1992;85(1):17–21.

    Article  CAS  PubMed  Google Scholar 

  24. Miranda PC, de Carvalho M, Conceicao I, Luis MLS, Ducla-Soares E. A new method for reproducible coil positioning in transcranial magnetic stimulation mapping. Electroencephalogr Clin Neurophysiol. 1997;105:116–123.

    Article  CAS  PubMed  Google Scholar 

  25. Kaneko K, Kawai S, Fuchigami Y, Morita H, Ofuji A. The effect of current direction induced by transcranial magnetic stimulation on the corticospinal excitability in human brain. Electroencephalogr Clin Neurophysiol. 1996;101:478–482.

    Article  CAS  PubMed  Google Scholar 

  26. Pridmore S, et al. Motor threshold in transcranial magnetic stimulation: a comparison of a neurophysiological method and a visualization of movement method. J ECT. 1998;14(1):25–27.

    CAS  PubMed  Google Scholar 

  27. Lefebvre R, Pepin A, Louis PF, Boucher JP. Reliability of the motor evoked potentials elicited through magnetic stimulation at three sites. J Manip Psycholog Therapeutics. 2004; 27(2): 97–102.

    Google Scholar 

  28. Hugon M. Methodology of the Hoffmann reflex in man. In: Desmedt J, editor. New developments in electromyography and clinical neurophysiology. Basel, Switzerland: Karger; 1973. p. 277–293.

    Google Scholar 

  29. Merton P, et al. Scope of a technique for electrical stimulation of the human brrain, spinal cord, and muscle. Lancet. 1982;2(8298):597–600.

    Article  CAS  PubMed  Google Scholar 

  30. Barker A, Jalinous R, Freeston I. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985; 1(8437): 1106–1107.

    Google Scholar 

  31. Rossini P, DiStefano E, Stanzione P. Nerve impulse propagation along central and peripheral fast conducting motor and sensory pathways in man. Electroencephalogr Clin Neurophysiol. 1985;60(4):320–334.

    Article  CAS  PubMed  Google Scholar 

  32. Rossini P, et al. Nervous propagation along ‘central’ motor pathways in intact man: characteristics of motor responses to ‘bifocal’ and ‘unifocal’ spine and scalp non-invasive stimulation. Electroencephalogr Clin Neurophysiol. 1985;61(4):272–286.

    Article  CAS  PubMed  Google Scholar 

  33. Portney LG, Watkins M. Foundations of clinical research: applications to practice (2nd ed.). Prentice Hall Health: Upper Saddle River, NJ. 2000.

  34. Weber M, Eisen A. Magnetic stimulation of the central and peripheral nervous systems. Muscle Nerve. 2002;25:160–175.

    Article  PubMed  Google Scholar 

  35. Macdonnell R, et al. Hemispheric threshold differences for motor evoked potentials produced by magnetic coil stimulation. Neurol. 1991;41:1441–1444.

    Google Scholar 

  36. Ruohonen J, Ilmoniemi R. Basic physics and design of transcranial magnetic stimulation devices and coils. In: Hallett M, Chokroverty S, editors. Magnetic stimulation in clinical neurophysiology. Philadelphia, PA: Elsevier; 2005. p. 17–30.

    Chapter  Google Scholar 

  37. Pascual-Leone A, et al. Non-invasive differentiation of motor cortical representation of hand muscles by mapping of optimal current directions. Electroencephalogr Clin Neurophysiol. 1994;93:42–48.

    Article  CAS  PubMed  Google Scholar 

  38. Hess CW, Mills K, Murray NM. Responses in small hand muscles from magnetic stimulation of the human brain. J Physiol. 1987;388:397–419.

    CAS  PubMed  Google Scholar 

  39. Caramia M, Rossini P. Evaluation of human central motor pathways by magnetic stimulation: characterization of conductivity and excitability in a clinical context. In: Chokroverty S, editor. Magnetic stimulation in clinical neurophysiology. Boston, MA: Butterworth Publishers; 1990. p. 145–149.

    Google Scholar 

  40. Tombimatsu S, et al. Effects of sex, height and age on motor evoked potentials with magnetic stimulation. J Neurol. 1998;245:256–261.

    Article  Google Scholar 

  41. van der Kamp W, et al. Magnetic evoked potentials (MEPs) are larger in left-handed subjects. Muscle Nerve. 1994;1:118–119.

    Google Scholar 

  42. Andersen B, Rosler KM, Lauritzen M. Nonspecific facilitation of responses to transcranial magnetic stimulation. Muscle Nerve. 1999;22:857–863.

    Article  CAS  PubMed  Google Scholar 

  43. Funase K, Miles TS, Gooden BR. Trial-to-trial fluctuations in H-reflex and motor evoked potentials in human wrist flexor. Neurosci Lett. 1999;271:25–28.

    Article  CAS  PubMed  Google Scholar 

  44. Thompson PD, Day BL, Rothwell JC, Dressler D, Maertens de Noordhout A, Marsden CD. Further observations on the facilitation of muscle responses to cortical stimulation by voluntary contraction. Electroencephalogr Clin Neurophysiol. 1991;81:397–402.

    Article  CAS  PubMed  Google Scholar 

  45. deNoordhout AM, et al. Facilitation of responses to motor cortex stimulation: effects of isometric voluntary contraction. Electroencephalogr Clin Neurophysiol. 1992;105:1–7.

    Google Scholar 

  46. Yahagi S, Kasai T. Motor evoked potentials induced by motor imagery reveal a functional asymmetry of cortical motor conrol in left- and right-handed human subjects. Neurosci Lett. 1999;276:185–188.

    Article  CAS  PubMed  Google Scholar 

  47. Murray N. The clinical usefulness of magnetic cortical stimulation. Electroencephalogr Clin Neurophysiol. 1992;85:81–85.

    Article  CAS  PubMed  Google Scholar 

  48. Livingston SC, Ingersoll CD. Intra-rater reliability of a transcranial magnetic stimulation technique to obtain motor evoked potentials. Int J Neurosci. 2008;118(2):239–256.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott C. Livingston PhD, PT, ATC, SCS.

Additional information

Livingston SC, Goodkin HP, Ingersoll CD. The influence of gender, hand dominance, and upper extremity length on motor evoked potentials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livingston, S.C., Goodkin, H.P. & Ingersoll, C.D. The influence of gender, hand dominance, and upper extremity length on motor evoked potentials. J Clin Monit Comput 24, 427–436 (2010). https://doi.org/10.1007/s10877-010-9267-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-010-9267-8

Keywords

Navigation