Skip to main content

Advertisement

Log in

Guidelines for intraoperative neuromonitoring using raw (analog or digital waveforms) and quantitative electroencephalography: a position statement by the American Society of Neurophysiological Monitoring

  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Background context

Electroencephalography (EEG) is one of the oldest and most commonly utilized modalities for intraoperative neuromonitoring. Historically, interest in the EEG patterns associated with anesthesia is as old as the discovery of the EEG itself. The evolution of its intraoperative use was also expanded to include monitoring for assessing cortical perfusion and oxygenation during a variety of vascular, cardiac, and neurosurgical procedures. Furthermore, a number of quantitative or computer-processed algorithms have also been developed to aid in its visual representation and interpretation. The primary clinical outcomes for which modern EEG technology has made significant intraoperative contributions include: (1) recognizing and/or preventing perioperative ischemic insults, and (2) monitoring of brain function for anesthetic drug administration in order to determine depth of anesthesia (and level of consciousness), including the tailoring of drug levels to achieve a predefined neural effect (e.g., burst suppression). While the accelerated development of microprocessor technologies has fostered an extraordinarily rapid growth in the use of intraoperative EEG, there is still no universal adoption of a monitoring technique(s) or of criteria for its neural end-point(s) by anesthesiologists, surgeons, neurologists, and neurophysiologists. One of the most important limitations to routine intraoperative use of EEG may be the lack of standardization of methods, alarm criteria, and recommendations related to its application. Lastly, refinements in technology and signal processing can be expected to advance the usefulness of the intraoperative EEG for both anesthetic and surgical management of patients.

Objective

This paper is the position statement of the American Society of Neurophysiological Monitoring. It is the practice guidelines for the intraoperative use of raw (analog and digital) and quantitative EEG.

Methods

The following recommendations are based on trends in the current scientific and clinical literature and meetings, guidelines published by other organizations, expert opinion, and public review by the members of the American Society of Neurophysiological Monitoring. This document may not include all possible methodologies and interpretative criteria, nor do the authors and their sponsor intentionally exclude any new alternatives.

Results

The use of the techniques reviewed in these guidelines may reduce perioperative neurological morbidity and mortality.

Conclusions

This position paper summarizes commonly used protocols for recording and interpreting the intraoperative use of EEG. Furthermore, the American Society of Neurophysiological Monitoring recognizes this as primarily an educational service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Electroencephalographic Society. Guidelines in electroencephalography evoked potentials and polysomnography. J Clin Neurophysiol. 1994;11:1–147.

    Google Scholar 

  2. Cummings M, Ahn-Ewing J, Brouwer M, et al. Guidelines on intraoperative electroencephalography for technologists. Am J END Technol. 1998;38:204–25.

    Google Scholar 

  3. Mizrahi EM, Chatrain G-E, Byrum W, et al. (2000) American clinical guidelines on intraoperative electroencephalography. American Clinical Neurophysiology Society Council 1–21.

  4. American Clinical Neurophysiology Society. Guidelines in electroencephalography and evoked potentials. J Clin Neurophysiol. 2006;23:85–179.

    Google Scholar 

  5. Freye E, Levy JV. Cerebral monitoring in the operating room and the intensive care unit: an introductory for the clinician and a guide for the novice wanting to open a window to the brain. Part I: the electroencephalogram. J Clin Monit Comput. 2005;19:1–76.

    PubMed  Google Scholar 

  6. Nuwer MR. Intraoperative electroencephalography. J Clin Neurophysiol. 1993;10:437–44.

    CAS  PubMed  Google Scholar 

  7. Seaba P. The importance of measuring electrode impedance. Clearwater, FL: Oxford Observer, Spring, Oxford Medical Systems; 1985.

    Google Scholar 

  8. Stecker MM, Patterson T. Electrode impedance in neurophysiologic recordings: 1. Theory and intrinsic contributions to noise. Am J END Technol. 1998;38:174–98.

    Google Scholar 

  9. Stecker MM, Patterson T. Electrode impedance in neurophysiologic recordings: 2. Role in electromagnetic interference. Am J END Technol. 1999;39:34–51.

    Google Scholar 

  10. Edmonds HL Jr, Rodriguez RA, Audenaert SM, et al. The role of neuromonitoring in cardiovascular surgery. J Cardiothorac Vasc Anesth. 1996;10:15–23.

    PubMed  Google Scholar 

  11. Isley MR, Cohen MJ, Wadsworth JS, et al. Multimodality neuromonitoring for carotid endarterectomy surgery: determination of critical cerebral ischemic thresholds. Am J END Technol. 1998;38:65–122.

    Google Scholar 

  12. Altman CL. Infection control and the electroneurodiagnostic department: 1994 guidelines. Am J EEG Technol. 1995;35:3–36.

    Google Scholar 

  13. Altman CL. Infection control: 2000 review and update for electroneurodiagnostic technologists. Am J EEG Tech. 2000;40:73–97.

    Google Scholar 

  14. Isley MR, Pearlman RC, Credentialing and competency policy statement for intraoperative neuromonitoring staff: American society of neurophysiological monitoring position statement. Syngery July/August. 2006; 34: 38–41.

    Google Scholar 

  15. American Board of Registration of Electroencephalographic and Evoked Potential Technologists, Inc. Code of ethics and standards of practice. 1996: 1–2.

  16. Luna G, Adye B. Cost-effective carotid endarterectomy. Am J Surg. 1995;169:516–8.

    CAS  PubMed  Google Scholar 

  17. Executive Committee for the Asymptomatic Carotid Atherosclerois Study. Endarterectomy for asymptomatic carotid artery stenosis. JAMA. 1995;273:1421–8.

    Google Scholar 

  18. Cowan JA, Dimick JB, Thompson BG, et al. Surgeon volume as an indicator of outcomes after carotid endarterectomy: an effect independent of speciality practice and hospital volume. J Am Coll Surg. 2002;195:814–21.

    PubMed  Google Scholar 

  19. Jansen C, Vriens EM, Eikelboom BC, et al. Carotid endarterectomy with transcranial doppler and electroencephalographic monitoring: a prospective study in 130 operations. Stroke. 1993;24:665–9.

    CAS  PubMed  Google Scholar 

  20. Cheng MA, Theard MA, Templehoff R. Anesthesia for carotid endarterectomy: a survey. J Neurosurg Anesth. 1997;9:211–6.

    CAS  Google Scholar 

  21. Fode NC, Sundt TS, Robertson JT, et al. Multicenter retrospective review of results and complications of carotid endarterectomy in 1981. Stroke. 1986;17:370–6.

    CAS  PubMed  Google Scholar 

  22. Crosby G. CNS dysfunction in the perioperative period: causes and solutions. Course review lecture. Am Soc Anesthesiol. 1990;42:1–7.

    Google Scholar 

  23. Beebe HG, Clagett GP, DeWeese JA, et al. Assessing risk associated with carotid endarterectomy. A statement for health professionals by ad hoc committee on carotid surgery standards of the stroke council american heart association. Circulation. 1989;79:472–3.

    CAS  PubMed  Google Scholar 

  24. American Academy of Neurology. Assessment. Intraoperative neurophysiology. report of the therapeutics and technology assessement. Minneapolis,MN: Executive Office; 1990.

    Google Scholar 

  25. Blume WT, Sharbrough FW. EEG monitoring during carotid endarterectomy and open heart surgery. In: Niedermeyer E, da Silva FL, editors. Electroencephalography: basic principles, clinical applications, and related fields. Baltimore: Urban and Schwarzenberg; 1993. p. 747–63.

    Google Scholar 

  26. Craft RM, Losasso TJ, Perkins WJ, et al. EEG monitoring for cerebral ischemia during carotid endarterectomy (CEA): how much is enough? Anesthesiology. 1994;81:A213.

    Google Scholar 

  27. Rampil IJ. Electrophysiologic monitoring. Probl Anesth. 2000;12:401–9.

    Google Scholar 

  28. Edmonds HL Jr, Sehic A, Gruenthal M. Comparison of 2-, 4- and 16-channel EEG for.detection of cerebral ischemia. Anesthesiology. 2000;97(3A):A-305.

    Google Scholar 

  29. Sundt TM Jr, Ebersold MJ, Sharbrough FW, et al. The risk-benefit ratio of intraoperative shunting during carotid endarterectomy: relevancy of operative and post-operative results and complications. Ann Surg. 1986;203:196–204.

    PubMed  Google Scholar 

  30. Ahn S, Concepcion B. Intraoperative monitoring during carotid endarterectomy. Semin Vasc Surg. 1995;8:29–37.

    CAS  PubMed  Google Scholar 

  31. McGrail KM. Intraoperative use of electroencephalography as an assessment of cerebral blood flow. Neurosurg Clin N Am. 1996;7:685–92.

    CAS  PubMed  Google Scholar 

  32. Gewertz BL, McCaffrey M. Recognition of cerebral ischemia during carotid artery reconstruction. In: Ernst CB, Stanley JC, editors. Current therapy in vascular surgery. 2nd ed. Philadelphia: B. C. Decker Inc; 1991. p. 76–81.

    Google Scholar 

  33. LoGerfo FW, Jepsen SJ. Role of carotid shunting during carotid endarterectomy. In: Ernst CB, Stanley JC, editors. Current therapy in vascular surgery. 2nd ed. Philadelphia: B. C. Decker Inc; 1991. p. 81–4.

    Google Scholar 

  34. Malone JM, Lalka SG. The placement of a carotid artery shunt: argument for its routine use. In: Moore WS, editor. Surgery for cerebrovascular disease. 1st ed. New York, NY: Churchill Livingstone; 1987.

    Google Scholar 

  35. Bloom MJ, Schwartz DM, Berkowitz HD, Pratt RE. DSA processing of eeg is an effective monitor in cea. J Neurosurg Anesth. 1990;2:S13.

    Google Scholar 

  36. Plestis KA, Loubser P, Mizrahi EM, et al. Continuous electroencephalographic monitoring and selective shunting reduces neurologic morbidity rates in carotid endarterectomy. J Vasc Surg. 1997;25:620–8.

    CAS  PubMed  Google Scholar 

  37. Cho I, Smullen SN, Streletz LJ, Fariello RG. The value of intraoperative eeg monitoring during carotid endarterectomy. Ann Neurol. 1986;20:508–12.

    CAS  PubMed  Google Scholar 

  38. Javid H, Julian OC, Dye WS, et al. Seventeen-year experience with routine shunting in carotid artery surgery. World J Surg. 1979;3(2):167–77.

    CAS  PubMed  Google Scholar 

  39. Jenkins GM, Chiappa KH, Young RR. Practical aspects of EEG monitoring during carotid endarterectomies. Am J EEG Technol. 1983;23:191–203.

    Google Scholar 

  40. Sharbrough FW. EEG monitoring: II. Intraoperative recording. American EEG Society Course, American EEG Society, 1983.

  41. Chiappa KH, Burke SR, Young RR. Results of electroencephalographic monitoring during 367 carotid endarterectomies: use of a dedicated minicomputer. Stroke. 1979;10:381–8.

    CAS  PubMed  Google Scholar 

  42. Faught E. Current role of electroencephalography in cerebral ischemia. Stroke. 1993;24:609–13.

    CAS  PubMed  Google Scholar 

  43. Kearse LA, Martin D, McPeck K, Lopez-Bresnahan M. Computer derived density spectral array in detection of mild analog electroencephalographic ischemic pattern changes during carotid endarterectomy. J Neurosurg. 1993;78:884–90.

    PubMed  Google Scholar 

  44. Sharbrough FW, Messick JM, Sundt TM. Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke. 1973;4:674–83.

    CAS  PubMed  Google Scholar 

  45. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia-the ischemia penumbra. Stroke. 1981;12:723–5.

    CAS  PubMed  Google Scholar 

  46. Sundt TM Jr, Sharbrough FW, Piepgras DG, et al. Correlation of cerebral blood flow and electroencephalographic changes during carotid endarterectomy with results of surgery and hemodynamics of cerebral ischemia. Mayo Clin Proc. 1981;56:533–41.

    PubMed  Google Scholar 

  47. Michenfelder JD, Sundt TM Jr, Fode NC, Sharbrough FW. Isoflurane when compared to enflurane and halothane decreases the frequency of cerebral ischemia during carotid endarterectomy. Anesthesiology. 1987;67:336–40.

    CAS  PubMed  Google Scholar 

  48. Lam AM, Manninen PH, Ferguson GG, Nantau W. Monitoring electrophysiologic function during carotid endarterectomy: a comparison of somatosensory evoked potentials and conventional electroencephalogram. Anesthesiology. 1991;75:15–21.

    CAS  PubMed  Google Scholar 

  49. Mahla ME. Anesthetic effects on the electroencephalogram. ASNM Monit: Am Soc Neurophysiol Monit Newsl. 1992;3:2–7.

    Google Scholar 

  50. Brechner VL, Walter RD, Dillon JB. Practical electroencephalography for the anesthesiologist. Springfield, IL: Thomas; 1962.

    Google Scholar 

  51. Pichlmayr I, Lips U, Künkel H. The electroencephalogram in anesthesia: fundamentals, practical applications, examples. New York NY: Springer-Verlag; 1984.

    Google Scholar 

  52. Donegan JH. The electroencephalogram. In: Blitt CD, editor. Monitoring anesthesia and critical care medicine. New York NY: Churchill Livingstone; 1985. p. 323–43.

    Google Scholar 

  53. Pichlmayr I. EEG atlas for anesthesiologists. New York NY: Springer-Verlag; 1987.

    Google Scholar 

  54. Markand ON. Continuous assessment of cerebral function with EEG and somatosensory evoked potential techniques during extracranial vascular reconstruction. In: Loftus CM, Traynelis VC, editors. Intraoperative monitoring techniques in neurosurgery. New York, NY: McGraw-Hill Inc; 1994. p. 19–31.

    Google Scholar 

  55. Heart Disease and Stroke Statistics. Update At-A-Glance. Statistical fact sheets: 13 medical procedures. American Heart Association, 2009.

  56. Hammeke TA, Hastings JE. Neuropscyhologic alterations after cardiac surgery. J Thorac Cardiovasc Surg. 1988;96:326–31.

    CAS  PubMed  Google Scholar 

  57. Reves JG, Newman MF. The brain and cardiac surgery. Anesth Analg IARS Review Course Lectures 1996.

  58. Newman MF, Kirchner JL, Phillips-Bute B, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;6:395–402.

    Google Scholar 

  59. Edmonds HL Jr, Pollock SB Jr, et al. Neuromonitoring for cardiac and vascular surgery. In: Newman SP, Harrison MJG, editors. The brain and cardiac surgery. London: Harwood Publishers; 2000. p. 145–52.

    Google Scholar 

  60. Isley MR, Kafer ER, Bloom MJ. Anesthesia monitoring during surgery: intraoperative cerebral monitoring during cardiac surgery using computer-processed eeg. Med Electron. 1990;122:82–94.

    Google Scholar 

  61. Isley MR. Intraoperative brain monitoring using analog and computer-processed eeg. biophysical measurements: electromyography/electroencephalography. Seattle WA: SpaceLabs Medical; 1993. p. 158–96.

    Google Scholar 

  62. Arom KV, Cohen DE, Strobl FT. Effect of intraoperative intervention on neurological outcome based on electroencephalographic monitoring during cardiopulmonary bypass. Ann Thorac Surg. 1989;48:476–83.

    CAS  PubMed  Google Scholar 

  63. Edmonds HL Jr, Griffiths LK, van der Laken J, et al. Quantitative electroencephalogragphic monitoring during myocardial revascularization predicts postoperative disorientation and improves outcome. J Thorac Cardiovasc Surg. 1992;3:555–63.

    Google Scholar 

  64. Edmonds HL Jr, Toney KA, Thomas MH, Pollock SB Jr. Neuromonitoring reduces cardiac surgery cost. Anesthesiology. 1997;87(3A):A-42–6.

    Google Scholar 

  65. Sebel PS, Bovill JG, Waquier A, Rog P. The effects of high-dose fentanyl on the electroencephalogram. Anesthesiology. 1981;55:203–11.

    CAS  PubMed  Google Scholar 

  66. Waquier A, Bovill JG, Sebel PS. Electroencephalographic effects on fentanyl-, sufentanil-, and alfentanil anesthesia in man. Neuropsychobiology. 1984;11:203–6.

    Google Scholar 

  67. Stecker MM, Cheung AT, Pochettino A, et al. Deep hypothermic circulatory arrest: I. Effects of cooling on the electroencephalogram and evoked potentials. Ann Thorac Surg. 2001;71:14–21.

    CAS  PubMed  Google Scholar 

  68. Nussmeir NA, Arlund C, Slogoff S. Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate. Anesthesiology. 1986;64:165–70.

    Article  Google Scholar 

  69. Todd MM. A comfortable hypothesis reevaluated: cerebral metabolic depression and brain protection during ischemia (Editorial). Anesthesiology. 1992;76:161–4.

    CAS  PubMed  Google Scholar 

  70. Bailes JE, Lokesh ST, Fukushima T, et al. Intraoperative microvascular Doppler sonography in aneurysm surgery. Neurosurgery. 1997;40:965–72.

    CAS  PubMed  Google Scholar 

  71. Bloom MJ. EEG monitoring: intraoperative application. Anesth Clin N Am. 1997;15:551–71.

    Google Scholar 

  72. Rampil IJ. A primer for eeg signal processing in anesthesia. Anesthesiology. 1998;89:980–1002.

    CAS  PubMed  Google Scholar 

  73. American Electroencephalographic Society. Statement on the clinical use of quantitative eeg. J Clin Neurophysiol. 1987;4:87.

    Google Scholar 

  74. Levy WJ, Shapiro HM, Maruchak G, et al. Automated eeg processing for intraoperative monitoring: a comparison of techniques. Anesthesiology. 1980;53:223–36.

    CAS  PubMed  Google Scholar 

  75. Rampil IR. Monitoring depth of anesthesia. Curr Opin Anaesthesiol. 2001;14:649–53.

    CAS  PubMed  Google Scholar 

  76. Bickford RG, Fleming NI, Billinger TW. Compression of EEG data. Transact Am Neurological Assoc. 1971;98:118–22.

    Google Scholar 

  77. Fleming RA, Smith NT. An inexpensive device for analyzing and monitoring the electroencephalogram. Anesthesiology. 1979;50:456–60.

    CAS  PubMed  Google Scholar 

  78. Duffy FN. Topographic mapping of brain electrical activity. Boston MA: Butterworth Publishers; 1986.

    Google Scholar 

  79. Fisher RS, Raudzens P, Nunemacher M. Efficacy of intraoperative neurophysiological monitoring. J Clin Neurophysiol. 1995;12:97–109.

    CAS  PubMed  Google Scholar 

  80. Ivanovic LV, Rosenberg RS, Towle VL, et al. Spectral analysis of eeg during carotid endarterectomy. Ann Vasc Surg. 1986;1:112–7.

    CAS  PubMed  Google Scholar 

  81. Archibald JE. Changes in eeg/csa seen during carotid endarterectomy intraoperative monitoring: EEG. American Society of Electroneurodiagnostic Technologist, Inc 1996; 2: 20–42.

    Google Scholar 

  82. Beachman SG, Frye D. EEG monitoring during carotid endarterectomy surgery: a tutorial. Intraoperative monitoring: EEG. American Society of Electroneurodiagnostic Technologist, Inc 1996; 2: 43–63.

    Google Scholar 

  83. Rampil IJ, Holzer JA, Quest DO, et al. Prognostic value of computerized eeg analysis during carotid endarterectomy. Anesth Analg. 1983;62:186–92.

    CAS  PubMed  Google Scholar 

  84. Tempelhoff R, Modica PA, Grubb J, et al. Selective shunting during carotid endarterectomy based on two-channel computerized electroencephalographic/compressed spectral array analysis. Neurosurgery. 1989;24:339.

    CAS  PubMed  Google Scholar 

  85. Bashein G, Nessly ML, Bledsoe SW, et al. Electroencephalography during surgery with cardiopulmonary bypass and hypothermia. Anesthesiology. 1992;76:878–91.

    CAS  PubMed  Google Scholar 

  86. Berger H. Über das elektroenkephalogramm des menschen. Arch Paychiatr Nervenkr. 1929;87:527–70.

    Google Scholar 

  87. Berger H. Über das elektroenkephalogramm des menschen: VI. Mitteilung. Arch Paychiatr Nervenkr. 1933;20:301–21.

    Google Scholar 

  88. Bickford RG. Neurophysiology applications of automatic anesthesia-regulator controlled by brain potentials. J Physiol. 1949;159:562–3.

    Google Scholar 

  89. Bickford RG. Automatic electroencephalographic control of general anesthesia. Electroencephalogr Clin Neurophysiol. 1950;2:93–6.

    Google Scholar 

  90. Bickford RG. Use of frequency discrimination in the automatic eeg-control of anesthesia. Electroencephalogr Clin Neurophysiol. 1951;3:81–5.

    Google Scholar 

  91. Gibbs FA, Gibbs EL. Atlas of electroencephalography, vol. 1–3. MA: Addison- Wessly; 1951.

    Google Scholar 

  92. Schneider J, Thomalske G. Betrachtungen über den narkosemechanismus unter besonderer berücksichtigung des hirnstammes. Zentralbl Neurochic. 1956;16:185–202.

    CAS  Google Scholar 

  93. Kubicki S. Elektroenzephalographische aspekte der narkose. Berl Med. 1968;19:4–12.

    Google Scholar 

  94. Kugler J, Elektroenzephalographie in klinik and praxis, eine einführung, 3rd Edition, Thieme Stuttgart, 1981.

  95. Schmidt GN, Bischoff P, Standl T, et al. NaroctrendR and bispectral indexR monitors are superior to classic electroencephalographic parameters for the assessment of anesthetic states during propofol-remifentanil anesthesia. Anesthesia. 2003;99:1072–7.

    CAS  Google Scholar 

  96. Myles PS, Leslie K, McNeil J, et al. Bispectral index monitoring to prevent awareness during anaesthesai: B-Aware randomised controlled trial. Lancet. 2004;363:1757–63.

    CAS  PubMed  Google Scholar 

  97. Avidan MS, Zhang L, Burnside BA, et al. Anesthesia awareness and the bispectral index. N Engl J Med. 2008;358:1097–108.

    CAS  PubMed  Google Scholar 

  98. The Joint Commission. Sentinel Event Alert: Preventing, and managing the impact of anesthesia, Issue 32, 2004.

  99. Liu WH, Thorp TA, Graham SG, Aitkenhead AR. Incidence of awareness with recall during general anesthesia. Anaesthesia. 1991;46:435–7.

    CAS  PubMed  Google Scholar 

  100. Jones JG. Perception and memory during general anaesthesia. Br J Anaesth. 1994;73:31–7.

    CAS  PubMed  Google Scholar 

  101. Ranta S, Jussila J, Hynynen M. Recall awareness during cardiac anaesthesia: influence.of feedback information to the anaesthesiologist. Acta Anaesthesiol Scand. 1996;40:554–60.

    CAS  PubMed  Google Scholar 

  102. Sebel PS, Bowdle TA, Ghoneim MM, et al. The incidence of awareness during anesthesia: a multicenter united states study. Anesth Analg. 2004;99:833–9.

    PubMed  Google Scholar 

  103. Domino KB. Closed malpractice claims for awareness during anesthesia. ASA Newsl. 1996;60(6):45.

    Google Scholar 

  104. Macready N (Editor). Handling the difficult dilemma of awareness under anesthesia. Anesthesia Malpractice Prevention. 1997;2:89–96.

    Google Scholar 

  105. Rampil IJ, Sasse FJ, Smith NT, et al. Spectral edge frequency: a new correlate of anesthetic depth. Anesthesiology. 1980;53:S4.

    Google Scholar 

  106. Rampil IJ, Smith NT. Comparison of EEG indices during halothane anesthesia. J Clin Monit. 1985;1:89–90.

    Google Scholar 

  107. Scott JC, Poganis KV, Stanski DR. EEG quantification narcotic effect: the comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology. 1985;62:234–41.

    Article  CAS  PubMed  Google Scholar 

  108. Scott JC, Stanski DR. Decreased fentanyl and alfentanil dose requirements with age. A simultaneous pharmacokinetic and pharmacodynamic evaluation. J Pharmacol Exp Ther. 1987;240:159–66.

    CAS  PubMed  Google Scholar 

  109. Bowdle TA, Ward RJ. Induction of anesthesia with small doses of sufentanil or fentanyl: dose versus eeg response, speed of onset, and thiopental requirement. Anesthesiology. 1989;707:26–30.

    Article  Google Scholar 

  110. Gugino LD, Aglio LS, Yli-Hankala A. Monitoring the electroencephalogram during bypass procedures. Semin Cardiothorac Vasc Anesth. 2004;8:61–83.

    PubMed  Google Scholar 

  111. Sigl JC, Chamoun NG. An introduction to bispectral analysis for the electro- encephalogram. J Clin Monit. 1994;10:392–404.

    CAS  PubMed  Google Scholar 

  112. Gan TJ, Glass PS, Windsor A, et al. Bipsectral index monitoring allows faster emergence and improved recovery from propofol, alfentanil, and nitrous oxide anesthesia. Anesthesiology. 1997;87:808–15.

    CAS  PubMed  Google Scholar 

  113. Rosow C, Manberg PJ. Bispectral index monitoring. Anesth Clin North Am Annual Anesth Pharm. 1998;2:89–107.

    Google Scholar 

  114. Johansen JW, Sigl JC. Bispectral index (bis) monitoring: cost analysis and anesthetic outcome. Anesthesiology. 1997;87:3A.

    Google Scholar 

  115. Orser BA. Depth-of-anesthesia monitor and the frequency of intraoperative awareness. N Engl J Med. 2008;358:1189–91.

    CAS  PubMed  Google Scholar 

  116. Leppanen RE. Intaoperative monitoring of segmental spinal nerve root function with free-run and electrically-triggered electromyography and spinal cord function with reflexes and F-responses. J Clin Monit Comput. 2005;19:437–61.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Isley PhD, DABNM, FASNM.

Additional information

Isley MR, Edmonds HL, Stecker M. Guidelines for intraoperative neuromonitoring using raw (analog or digital waveforms) and quantitative electroencephalography a position statement by the American society of neurophysiological monitoring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isley, M.R., Edmonds, H.L. & Stecker, M. Guidelines for intraoperative neuromonitoring using raw (analog or digital waveforms) and quantitative electroencephalography: a position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput 23, 369–390 (2009). https://doi.org/10.1007/s10877-009-9191-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-009-9191-y

Keywords

Navigation