Skip to main content
Log in

High-efficient n-type TiO2/p-type Cu2O nanodiode photocatalyst to detoxify hexavalent chromium under visible light irradiation

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

n-Type TiO2/p-type Cu2O nanodiode photocatalyst with different Cu2O contents had been successfully synthesized. The nanocomposite also had been well characterized and tested for its photocatalytic activity toward reduction of 10 ppm K2Cr2O7 aqueous solution under visible light illumination. It was found that 30 % Cu2O loading in the nanocomposite had the best photocatalytic activity in detoxifying Cr(VI) without any hole scavenger agents and the solution pH adjustment. As a result, water was simultaneously oxidized by photogenerated holes to evolve oxygen. The 20 mg as-prepared TiO2/Cu2O nanocomposites could reduce almost 100 % of 10 ppm K2Cr2O7 aqueous solution in 90 min under 150 W halogen lamp illumination. From the results, it was concluded that the photocatalytic activities of pn heterojunction of TiO2/Cu2O nanodiodes had proven to be an efficient photocatalyst under visible light illumination. The photocatalytic performances of TiO2/Cu2O nanocomposites and its photoreaction mechanism were proposed and discussed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Reyhanitabar A, Alidokht L, Khataee AR, Oustan S (2012) Application of stabilized FeO nanoparticles for remediation of Cr(VI)-spiked soil. Eur J Soil Sci 63(724):732

    Google Scholar 

  2. Yang JK, Lee SM (2006) Removal of Cr(VI) and humic acid by using TiO2 photocatalysis. Chemosphere 63(1677):1684

    Google Scholar 

  3. Chen D, Ray AK (2001) Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem Eng Sci 56(1561):1570

    Google Scholar 

  4. K’Owino IO, Omole MA, Sadik OA (2007) Tuning the surfaces of palladium nanoparticles for the catalytic conversion of Cr(VI) to Cr(III). J Environ Monit 9(657):665

    Google Scholar 

  5. Omole MA, K’Owino IO, Sadik OA (2007) Palladium nanoparticles for catalytic reduction of Cr(VI) using formic acid. Appl Catal B 76(158):167

    Google Scholar 

  6. Peyrav S, Zahiri R, Moradi Hersini K (2011) Removal of Zn2+ and Cr6+ from waste water samples, using natural Iranian (Aftar) zeolites. J Chem Health Risks 1(11):18

    Google Scholar 

  7. Memon JR, Memon SQ, Bhanger MI, Khuhawar MY (2008) Banana peel: a green and economical sorbent for Cr(III) removal. Anal Environ Chem 9(20):25

    Google Scholar 

  8. Lin CJ, Wang SL, Huang PM, Tzou YM, Liu JC, Chen CC, Chen JH, Lin C (2009) Chromate reduction by zero-valent Al metal as catalyzed by polyoxometalate. Water Res 43(5015):5022

    Google Scholar 

  9. Alidokht L, Khataee AR, Reyhanitabar A, Oustan S (2011) Reductive removal of Cr(VI) by starch-stabilized FeO nanoparticles in aqueous solution. Desalination 270(105):110

    Google Scholar 

  10. Alidokht L, Khataee AR, Reyhanitabar A, Oustan S (2011) Cr(VI) immobilization process in a Cr spiked soil by zerovalent iron nanoparticles: optimization using response surface methodology. CLEAN Soil Air Water 39(633):640

    Google Scholar 

  11. Kajitvichyanukul P, Changul C (2005) Photocatalytic removal of tri- and hexa-valent chromium ions from chrome-electroplating wastewater. J Sci Technol Dev 22(355):362

    Google Scholar 

  12. Liu Z, Wang G, Zhao X (2010) Removal of Cr(VI) from aqueous solution using ultrafine coal fly ash. J Wuhan Univ Technol Mater Sci Ed 25(323):327

    Google Scholar 

  13. Khorramabadi GS, Soltani RDC, Rezaee A, Khataee AR, Jafari AJ (2012) Utilization of immobilized activated sludge for the biosorption of chromium (VI). Can J Chem Eng 90(1539):1546

    Google Scholar 

  14. Shao D, Wang X, Fan Q (2009) Photocatalytic reduction of Cr(VI) to Cr(III) in solution containing ZnO or ZSM-5 zeolite using oxalate as model organic compound in environment. Microporous Mesoporous Mater 117(243):248

    Google Scholar 

  15. Zhang Y, Tang ZR, Fu X, Xu YJ (2011) Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: What advantage does graphene have over its forebear carbon nanotube? ACS Nano 5(7426):7435

    Google Scholar 

  16. Zhang N, Zhang Y, Xu YJ (2012) Recent progress on graphene based photocatalysts: current status and future perspectives. Nanoscale 4(5792):5813

    Google Scholar 

  17. Rezaee A, Masoumbeigi H, Soltani RD, Khataee AR, Hashemiyan S (2012) Photocatalytic decolorization of methylene blue using immobilized ZnO nanoparticles prepared by solution combustion method. Desalin Water Treat 44(174):179

    Google Scholar 

  18. Shirzad Siboni M, Samadi MT, Yang JK, Lee SM (2011) Photocatalytic reduction of Cr(VI) and Ni(II) in aqueous solution by synthesized nanoparticle ZnO under ultraviolet light irradiation: a kinetic study. Environ Technol 32(1573):1579

    Google Scholar 

  19. Choi WY, Termin A, Hoffmann MR (1994) Role of metal-ion dopants in quantum-sized TiO2—correlation between photoreactivity and charge-carrier recombination dynamics. J Phys Chem 98(13669):13679

    Google Scholar 

  20. Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Analysis of electronic structures of 3D transition metal doped TiO2 based on band calculation. J Phys Chem Solids 63:1909–1920

    Article  Google Scholar 

  21. Anpo M, Takeuchi M (2001) Design and development of second generation titanium oxide photocatalysts to better our environment-approaches in realizing the use of visible light. Int J Photoenergy 3(89):94

    Google Scholar 

  22. Kim JC, Choi J, Lee YB, Hong JH, Lee JI, Yang JW, Lee WI, Hur NH (2006) Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles. Chem Commun 48(5024):5026

    Google Scholar 

  23. Yamada S, Nosaka AY, Nosaka Y (2005) Fabrication of CdS photoelectrodes coated with titania nanosheets for water splitting with visible light. J Electroanal Chem 585(105):112

    Google Scholar 

  24. Yin YX, Jin ZG, Hou F (2007) Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays. Nanotechnology 18:495608

    Article  Google Scholar 

  25. Jang JS, Ji SW, Bae SW, Son HC, Lee JS (2007) Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ ≥ 420 nm). J Photochem Photobiol, A 188(112):119

    Google Scholar 

  26. Bessekhouad Y, Robert D, Weber JV, Chaoui N (2004) Effect of alkaline-doped TiO2 on photocatalytic efficiency. J Photochem Photobiol A 167(49):57

    Google Scholar 

  27. Yan J, Zhang L, Yang H, Tang Y, Lu Z, Guo S, Dai Y, Han Y, Yao M (2009) CuCr2O4/TiO2 heterojunction for photocatalytic H2 evolution under simulated sunlight irradiation. Sol Energy 83(1534):1539

    Google Scholar 

  28. Bajaj R, Sharma M, Bahadur D (2013) Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye. Dalton Trans 42(6736):6744

    Google Scholar 

  29. Guan ML, Ma DK, Hu SW, Chen YJ, Huang SM (2011) From hollow olive-shaped BiVO4 to np core-shell BiVO4@Bi2O3 microspheres: controlled synthesis and enhanced visible-light-responsive photocatalytic properties. Inorg Chem 50(800):805

    Google Scholar 

  30. Xu H, Xu Y, Li H, Xia J, Xiong J, Yin S, Huang C, Wan H (2012) Synthesis, characterization and photocatalytic property of AgBr/BiPO4 heterojunction photocatalyst. Dalton Trans 41(3387):3394

    Google Scholar 

  31. Chen S, Zhao W, Liu W, Zhang H, Yu X, Chen YH (2009) Preparation, characterization and activity evaluation of pn junction photocatalyst p-CaFe2O4/n-Ag3VO4 under visible light irradiation. J Hazard Mater 172(1415):1423

    Google Scholar 

  32. Jang JS, Kim HG, Lee SH (2012) Efficient photocatalytic degradation of acid orange 7 on metal oxide pn junction composites under visible light. J Phys Chem Solids 73(1372):1377

    Google Scholar 

  33. Liu W, Chen S (2010) Preparation and characterization of pn heterojunction photocatalyst Cu2O/In2O3 and its photocatalytic activity under visible and UV light irradiation. J Electrochem Soc 157:1029–1035

    Article  Google Scholar 

  34. Ma DK, Guan ML, Liu SS, Zhang YQ, Zhang CW, He YX, Huang SM (2012) Controlled synthesis at olive-shaped Bi2S3/BiVO4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity. Dalton Trans 41(5581):5586

    Google Scholar 

  35. Susman MD, Feldman Y, Vaskevich A, Rubinstein I (2014) Chemical deposition of Cu2O nanocrystals with precise morphology control. ACS Nano 8(162):174

    Google Scholar 

  36. Lingmei L, Yang W, Sun WZ, Li Q, Shang JK (2015) Creation of Cu2O@TiO2 composite photocatalysts with pn heterojunctions formed on exposed Cu2O facets, their energy band alignment study, and their enhanced photocatalytic activity under illumination with visible light. ACS Appl Mater Interfaces 7(1465):1476

    Google Scholar 

  37. Abdu Y, Musa AO (2009) Copper (I) oxide (Cu2O) based solar cells—a review. BAJOPAS 2(8):12

    Google Scholar 

  38. Georgieva V, Tanusevski A, Georgieva M (2011) Low cost solar cells based on cuprous oxide. In: Kosyachenko LA (ed) Solar cells - thin-film technologies. doi:10.5772/19693

  39. Hara M, Kondo T, Komoda M, Ikeda S, Kondo JN, Domen K, Hara M, Shinohara K, Tanaka A (1998) Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun 3(357):358

    Google Scholar 

  40. Xu H, Wang W, Zhu W (2006) Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. J Phys Chem B 110(13829):13834

    Google Scholar 

  41. Kuo CH, Huang MH (2008) Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures. J Phys Chem C 112(18355):18360

    Google Scholar 

  42. Kuo CH, Chen CH, Huang MH (2007) Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm. Adv Funct Mater 17(3773):3780

    Google Scholar 

  43. Shishiyanu ST, Shishiyanu TS, Lupan OI (2006) Novel NO2 gas sensor based on cuprous oxide thin films. Sens Actuators B Chem 113(468):476

    Google Scholar 

  44. Zhang J, Liu J, Peng Q, Wang X, Li Y (2006) Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem Mater 18(867):871

    Google Scholar 

  45. Lee YJ, Kim S, Park SH, Park H, Huh YD (2010) Morphology-dependent antibacterial activities of Cu2O. Mater Lett 65(818):820

    Google Scholar 

  46. Xu Y, Wang H, Yu Y, Tian L, Zhao W, Zhang B (2011) Cu2O nanocrystals: surfactant-free room-temperature morphology-modulated synthesis and shape-dependent heterogeneous organic catalytic activities. J Phys Chem C 115(15288):15296

    Google Scholar 

  47. White B, Yin M, Hall A, Le D, Stolbov S, Rahman T, Turro N, O’Brien S (2006) Complete CO oxidation over Cu2O nanoparticles supported on silica gel. Nano Lett 6(2095):2098

    Google Scholar 

  48. Morales J, Sánchez L, Bijani S, Martínez L, Gabás M, Ramos-Barrado JR (2005) Electrodeposition of Cu2O: an excellent method for obtaining films of controlled morphology and good performance in Li-ion batteries. Electrochem Solid State 8(A159):A162

    Google Scholar 

  49. Dong TY, Wu HH, Huang C, Song JM, Chen IG, Kao TH (2009) Octanethiolated Cu and Cu2O nanoparticles as ink to form metallic copper film. Appl Surf Sci 255:3891–3896

    Article  Google Scholar 

  50. Qiu X et al (2011) Hybrid CuxO/TiO2 nanocomposites as risk-reduction materials in indoor environments. ACS Nano 6(1609):1618

    Google Scholar 

  51. Zhang YG, Ma LL, Li JL, Yu Y (2007) In situ fenton reagent generated from TiO2/Cu2O composite film: a new way to utilize TiO2 under visible light irradiation. Environ Sci Technol 41(6264):6269

    Google Scholar 

  52. Ueno K, Imamura T, Cheng KL (1992) Handbook of organic analytical reagents. CRC Press, Boca Raton, FL

    Google Scholar 

  53. Abdullah H, Kuo DH (2015) Photocatalytic performance of Ag and CuBiS2 nanoparticle-coated SiO2@TiO2 composite sphere under visible and ultraviolet light irradiation for azo dye degradation with the assistance of numerous nano pn diodes. J Phys Chem C 119(13632):13641

    Google Scholar 

  54. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronic Inc., Minnesota

    Google Scholar 

  55. Mahesh KPO, Kuo DH, Huang BR (2015) Facile synthesis of heterostructured Ag-deposited SiO2@TiO2 composite spheres with enhanced catalytic activity towards the photodegradation of AB 1 dye. J Mol Catal A Chem 396(290):296

    Google Scholar 

  56. Rahimnejad S, He JH, Chen W, Wu K, Xu GQ (2014) Tuning the electronic and structural properties of WO3 nanocrystals by varying transition metal tungstate precursors. RSC Adv 4(62423):62429

    Google Scholar 

  57. Xu SC, Pan SS, Xu Y, Luo YY, Zhang YX, Li GH (2015) Efficient removal of Cr(VI) from waste water under sunlight by Fe(II)-doped TiO2 spherical shell. J Hazard Mater 283(7):13

    Google Scholar 

  58. Su J, Zhang Y, Xu S, Wang S, Ding H, Pan S, Wang G, Li G, Zhao H (2014) Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions. Nanoscale 6(5181):5192

    Google Scholar 

  59. Navio JA, Colon G, Trillas M, Peral JÂ, DomeÁnech X, Testa JJ, Padron J, Rodriguez D, Litter MI (1998) Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method. Appl Catal B Environ 16(187):196

    Google Scholar 

  60. Samarasekara P (2010) Characterization of low cost p-Cu2O/n-CuO junction. GESJ Phys 2(3):8

    Google Scholar 

  61. Grundmann M (2006) The physics of semiconductors. Springer, Heidelberg

    Google Scholar 

  62. Liang N, Zai JT, Xu M, Zhu Q, Wei X, Qian XF (2014) Novel Bi2S3/Bi2O2CO3 heterojunction photocatalysts with enhanced visible light responsive activity and wastewater treatment. J Mater Chem A 2(4208):4216

    Google Scholar 

  63. Mayer MT, Du C, Wang DW (2012) Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials. J Am Chem Soc 134(12406):12409

    Google Scholar 

  64. Zeng HB, Duan GT, Li Y, Yang SK, Xu XX, Cai WP (2010) Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv Funct Mater 20(561):572

    Google Scholar 

  65. Wang X, Pehkonen SO, Ray AK (2004) Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation. Ind Eng Chem Res 43(1665):1672

    Google Scholar 

  66. Yang GCC, Chan SW (2009) Photocatalytic reduction of chromium (VI) in aqueous solution using dye-sensitized nanoscale ZnO under visible light irradiation. J Nanopart Res 11(221):230

    Google Scholar 

  67. Qiu RL, Zhang DD, Diao Z, Huang XF, He C, Morel JL, Xiong Y (2012) Visible light induced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO2 and its synergism with phenol oxidation. Water Res 46(2299):2306

    Google Scholar 

  68. Antonopoulou M, Giannakas A, Konstantinou I (2012) Simultaneous photocatalytic reduction of Cr(VI) and oxidation of benzoic acid in aqueous N-F-codoped TiO2 suspensions: optimization and modeling using the response surface methodology. Intl J Photoenergy 2012:10

    Article  Google Scholar 

  69. Siboni MS, Farrokhi M, Soltani RDC, Khataee A, Tajassosi S (2014) Photocatalytic reduction of hexavalent chromium over ZnO nanorods immobilized on kaolin. Ind Eng Chem Res 53:1079–1087

    Article  Google Scholar 

  70. Yoneyama H, Yamashita Y, Tamura H (1979) Heterogeneous photocatalytic reduction of dichromate on n-type semiconductor catalysts. Nature 282(817):818

    Google Scholar 

  71. Liu SX (2005) Removal of copper (VI) from aqueous solution by Ag/TiO2 photocatalysis. Bull Environ Contam Toxicol 74(706):714

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of Taiwan under Grant no. MOST 104-2221-E-011-169-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hau Kuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, H., Kuo, DH. & Chen, YH. High-efficient n-type TiO2/p-type Cu2O nanodiode photocatalyst to detoxify hexavalent chromium under visible light irradiation. J Mater Sci 51, 8209–8223 (2016). https://doi.org/10.1007/s10853-016-0096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0096-0

Keywords

Navigation