Skip to main content
Log in

Photocatalytic Degradation of Eriochrome Black T Dye by ZnO Nanoparticles Using Multivariate Factorial, Kinetics and Isotherm Models

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In current study the photocatalyst ZnO was prepared by complexation of zinc acetate with sodium diethyl dithiocarbamate trihydrate, and calcined at 750 °C. The ZnO nanoparticles were characterized by DLS, Zeta potential, SEM, EDX and FTIR. The ZnO nanoparticles (NPs) were applied for photocatalytic degradation of Eriochrome black-T (EBT) dye by UV, visible and mercury light irradiation sources. The experimental conditions were optimized by univariate and multivariate techniques, and it was revealed that degradation of dye by ZnO NPs surface was dependent on source of light and pH of dye solution. The degradation of EBT dye at pH 11 showed highest degradation rate 99.64% with UV light. The ZnO was calcined at 450, 600, 750 and 900 °C, but the calcination temperature 750 °C showed better degradation rate for EBT. The highest degradation was found at 15 mg dose and 5 ppm concentration. The effects of Na+, Ca2+, K+, Mg2+ on the degradation, were studied and these salts had no effect on degradation rate. The degradation obeyed pseudo second order kinetics model as compared to pseudo first and zero order models and Langmuir isotherm model fitted more as compare to other models. The effects of variables were examined by factorial design of 18 experiments by cantered Draper-Lin small composite model. The degradation of EBT dye in real samples collected from River Indus, tape water and domestic wastewater and spiked with 20 μg/mL, indicated that the dye degraded upto 82–86% with relative standard deviations (RSD) within 2% (n = 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Hao, M. Qiu, H. Yang, B. Hu, and X. Wang (2021). Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci. Total Environ. 760, 143333.

    Article  CAS  PubMed  Google Scholar 

  2. Q. Li, Z. Chen, H. Wang, H. Yang, T. Wen, S. Wang, and X. Wang (2021). Removal of organic compounds by nanoscale zero-valent iron and its composites. Sci. Total Environ. 792, 148546.

    Article  CAS  PubMed  Google Scholar 

  3. S. Zhang, J. Wang, Y. Zhang, J. Ma, L. Huang, S. Yu, and X. Wang (2021). Applications of water-stable metal-organic frameworks in the removal of water pollutants: a review. Environ. Pollut. 291, 118076.

    Article  CAS  PubMed  Google Scholar 

  4. S. Yu, H. Pang, S. Huang, H. Tang, S. Wang, M. Qiu, and X. Wang (2021). Recent advances in metal-organic framework membranes for water treatment: a review. Sci. Total Environ. 800, 149662.

    Article  CAS  PubMed  Google Scholar 

  5. Y. Zou, Y. Hu, Z. Shen, L. Yao, D. Tang, S. Zhang, and X. Wang (2022). Application of aluminosilicate clay mineral-based composites in photocatalysis. J. Environ. Sci. 115, 190–214.

    Article  CAS  Google Scholar 

  6. S. Chidambaram, B. Pari, N. Kasi, and S. Muthusamy (2016). ZnO/Ag heterostructures embedded in Fe3O4 nanoparticles for magnetically recoverable photocatalysis. J. Alloys Compd. 665, 404–410.

    Article  CAS  Google Scholar 

  7. D. D. Liu, Z. S. Wu, F. Tian, B. C. Ye, and Y. B. Tong (2016). Synthesis of N and La codoped TiO2/AC photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene. J. Alloys Compd. 676, 489–498.

    Article  CAS  Google Scholar 

  8. Y. Liu, L. Yu, Y. Hu, C. F. Guo, F. M. Zhang, and X. W. Lou (2012). A magnetically separable photocatalyst based on nest-likeγ-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity. Nanoscale 4 (1), 183–187.

    Article  CAS  PubMed  Google Scholar 

  9. A. Vázquez, D. B. Hernández-Uresti, and S. Obregón (2016). Electrophoretic deposition of CdS coatings and their photocatalytic activities in the degradation of tetracycline antibiotic. Appl. Surf. Sci. 386, 412–417.

    Article  Google Scholar 

  10. D. Pathania, D. Gupta, H. Alaa, G. Sharma, A. Kumar, M. Naushad, et al. (2016). Photocatalytic degradation of highly toxic dyes using chitosan-g-poly (acrylamide)/ZnS in presence of solar irradiation. J. Photochem. Photobiol. A 329, 61–68.

    Article  CAS  Google Scholar 

  11. H. J. Lee, J. H. Kim, S. S. Park, S. S. Hong, and G. D. Lee (2015). Degradation kinetics for photocatalytic reaction of methyl orange over Al-doped ZnO nanoparticles. J. Ind. Eng. Chem. 25, 199–206.

    Article  CAS  Google Scholar 

  12. S. A. Ansari, M. M. Khan, M. O. Ansari, J. Lee, and M. H. Cho (2013). Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag-ZnO nanocomposite. J. Phys. Chem. C 117 (51), 27023–27030.

    Article  CAS  Google Scholar 

  13. S. Y. Pung, W. P. Lee, and A. Aziz (2012). Kinetic study of organic dye degradation using ZnO particles with different morphologies as a photocatalyst. Int. J. Inorg. Chem. 2012, 1–9.

    Article  Google Scholar 

  14. J. J. Vora, S. K. Chauhan, K. C. Parmar, S. B. Vasava, S. Sharma, and L. S. Bhutadiya (2009). Kinetic study of application of ZnO as a photocatalyst in heterogeneous medium. J. Chem. 6 (2), 531–536.

    CAS  Google Scholar 

  15. K. Byrappa, A. K. Subramani, S. Ananda, K. L. Rai, R. Dinesh, and M. Yoshimura (2006). Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO. Bull. Mater. Sci. 29 (5), 433–438.

    Article  CAS  Google Scholar 

  16. F. Barka-Bouaifel, B. Sieber, N. Bezzi, J. Benner, P. Roussel, L. Boussekey, and R. Boukherroub (2011). Synthesis and photocatalytic activity of iodine-doped ZnO nanoflowers. J. Mater. Chem. 21 (29), 10982–10989.

    Article  CAS  Google Scholar 

  17. A. Raja, S. Ashokkumar, R. P. Marthandam, J. Jayachandiran, C. P. Khatiwada, K. Kaviyarasu, and M. Swaminathan (2018). Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J. Photochem. Photobiol. B: Biol. 181, 53–58.

    Article  CAS  Google Scholar 

  18. S. M. Taghizadeh, N. Lal, A. Ebrahiminezhad, F. Moeini, M. Seifan, Y. Ghasemi, and A. Berenjian (2020). Green and economic fabrication of zinc oxide (ZnO) nanorods as a broadband UV blocker and antimicrobial agent. Nanomaterials 10 (3), 530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. R. Vinayagam, R. Selvaraj, P. Arivalagan, and T. Varadavenkatesan (2020). Synthesis, characterization and photocatalytic dye degradation capability of Calliandra haematocephala-mediated zinc oxide nanoflowers. J. Photochem. Photobiol. B: Biol. 203, 111760.

    Article  CAS  Google Scholar 

  20. N. M. El-Shafai, M. Shukry, I. M. El-Mehasseb, M. Abdelfatah, M. S. Ramadan, A. El-Shaer, and M. El-Kemary (2020). Electrochemical property, antioxidant activities, water treatment and solar cell applications of titanium dioxide–zinc oxide hybrid nanocomposite based on graphene oxide nanosheet. Mater. Sci. Eng.: B 259, 114596.

    Article  CAS  Google Scholar 

  21. S. Sagadevan, S. Vennila, S. N. Suraiya Begum, Y. A. Wahab, N. A. B. Hamizi, A. R. Marlinda, and H. Algarni (2020). Influence of incorporated barium ion on the physio-chemical properties of zinc oxide nanodisks synthesized via a sonochemical process. J. Nanosci. Nanotechnol. 20 (9), 5452–5457.

    Article  CAS  PubMed  Google Scholar 

  22. S. K. Kansal, S. Sood, A. Umar, and S. K. Mehta (2013). Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. J. Alloys Compd. 581, 392–397.

    Article  CAS  Google Scholar 

  23. J. Labuda, M. Skatulokova, M. Nemeth, and S. Gergely (1984). Formation and stability of diethyldithiocarbamate complexes. Chem. zvesti 38, 597.

    CAS  Google Scholar 

  24. H. Zhang, D. Liu, S. Ren, and H. Zhang (2017). Kinetic studies of direct blue photodegradation over flower-like TiO2. Res. Chem. Intermed. 43 (3), 1529–1542.

    Article  CAS  Google Scholar 

  25. M. B. Mukhlish, F. Najnin, M. M. Rahman, and M. J. Uddin (2013). Photocatalytic degradation of different dyes using TiO2 with high surface area: a kinetic study. J. Sci. Res. 5 (2), 301–314.

    Article  CAS  Google Scholar 

  26. F. Qureshi, S. Q. Memon, M. Y. Khuhawar, and T. M. Jahangir (2021). Removal of Co2+, Cu2+ and Au3+ ions from contaminated wastewater by using new fluorescent and antibacterial polymer as sorbent. Polym. Bull. 78 (3), 1505–1533.

    Article  CAS  Google Scholar 

  27. F. Qureshi, S. Q. Memon, M. Y. Khuhawar, T. M. Jahangir, and A. H. Channar (2021). Synthesis and application of fluorescent and thermally stable polyazomethine as adsorbent in the remediation of Ni (II), Cu (II) and Co (II) from wastewater systems. J. Polym. Res. 28 (7), 1–15.

    Article  Google Scholar 

  28. A. M. Pillai, V. S. Sivasankarapillai, A. Rahdar, J. Joseph, F. Sadeghfar, K. Rajesh, and G. Z. Kyzas (2020). Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J. Mol. Struct. 1211, 128107.

    Article  CAS  Google Scholar 

  29. M. V. Sujitha and S. Kannan (2013). Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim. Acta Part A 102, 15–23.

    Article  CAS  Google Scholar 

  30. A. Muthuvel, K. Adavallan, K. Balamurugan, and N. Krishnakumar (2014). Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties. Biomed. Prev. Nutr. 4 (2), 325–332.

    Article  Google Scholar 

  31. M. Fang, X. Tan, Z. Liu, B. Hu, and X. Wang (2021). Recent progress on metal-enhanced photocatalysis: a review on the mechanism. Research 2021, 1–16.

    Article  Google Scholar 

  32. M. Qiu, B. Hu, Z. Chen, H. Yang, L. Zhuang, and X. Wang (2021). Challenges of organic pollutant photocatalysis by biochar-based catalysts. Biochar 3 (2), 117–123.

    Article  CAS  Google Scholar 

  33. Z. H. Zhang, Y. Xu, X. P. Ma, F. Y. Li, D. N. Liu, Z. L. Chen, et al. (2012). Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW). J. Hazard Mater. 209, 271–277.

    Article  PubMed  Google Scholar 

  34. S. Lan, L. Liu, R. Q. Li, Z. H. Leng, and S. C. Gan (2014). Hierarchical hollow structure ZnO: synthesis, characterization, and highly efficient adsorption/photocatalysis toward Congo red. Ind. Eng. Chem. Res. 53 (8), 3131–3139.

    Article  CAS  Google Scholar 

  35. A. Khataee, R. D. C. Soltani, A. Karimi, and S. W. Joo (2015). Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process. Ultrason. Sonochem. 23, 219–230.

    Article  CAS  PubMed  Google Scholar 

  36. L. Saikia, D. Bhuyan, M. Saikia, B. Malakar, D. K. Dutta, and P. Sengupta (2015). Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. Appl. Catal. A Gen. 490, 42–49.

    Article  CAS  Google Scholar 

  37. I. Ali, O. M. Alharbi, Z. A. Alothman, and A. Y. Badjah (2018). Kinetics, thermodynamics, and modeling of amido black dye photodegradation in water using Co/TiO2 nanoparticles. Photochem. Photobiol 94 (5), 935–941.

    Article  CAS  PubMed  Google Scholar 

  38. F. Moeinpour, A. Alimoradi, and M. Kazemi (2014). Efficient removal of Eriochrome black-T from aqueous solution using NiFe2O4 magnetic nanoparticles. J. Environ. Health Sci. Eng. 12 (1), 1–7.

    Article  Google Scholar 

  39. J. Zhu and Z. Jiang (2021). Electrochemical photocatalytic degradation of eriochrome black T dye using synthesized TiO2@ CNTs nanofibers. Int. J. Electrochem. Sci. 16, 210318.

    Article  CAS  Google Scholar 

  40. M. Z. Sarker, M. M. Rahman, H. Minami, T. Suzuki, M. K. Hossain, and H. Ahmad (2021). Mesoporous amine functionalized SiO2 supported Cu nanocatalyst and a kinetic-mechanistic degradation study of azo dyes. Coll. Surf. A 617, 126403.

    Article  CAS  Google Scholar 

  41. M. Najjar, H. A. Hosseini, A. Masoudi, Z. Sabouri, A. Mostafapour, M. Khatami, and M. Darroudi (2021). Green chemical approach for the synthesis of SnO2 nanoparticles and its application in photocatalytic degradation of Eriochrome Black T dye. Optik 242, 167152.

    Article  CAS  Google Scholar 

  42. S. T. Fardood, R. Forootan, F. Moradnia, Z. Afshari, and A. Ramazani (2020). Green synthesis, characterization, and photocatalytic activity of cobalt chromite spinel nanoparticles. Mater. Res. Express 7 (1), 015086.

    Article  CAS  Google Scholar 

  43. A. S. Adekunle, J. A. Oyekunle, L. M. Durosinmi, O. S. Oluwafemi, D. S. Olayanju, A. S. Akinola, and T. A. Ajayeoba (2020). Potential of cobalt and cobalt oxide nanoparticles as nanocatalyst towards dyes degradation in wastewater. Nano-Struct. Nano-Objects 21, 100405.

    Article  CAS  Google Scholar 

  44. A. O. Ifebajo, A. A. Oladipo, and M. Gazi (2020). Sun-light driven enhanced azo dye decontamination from aqueous solution by CoO− CuFe. Desalin. Water Treat. 177 (2020), 423–430.

    Article  CAS  Google Scholar 

  45. S. Mishra, S. Soren, A. K. Debnath, D. K. Aswal, N. Das, and P. Parhi (2018). Rapid microwave–Hydrothermal synthesis of CeO2 nanoparticles for simultaneous adsorption/photodegradation of organic dyes under visible light. Optik 169, 125–136.

    Article  CAS  Google Scholar 

  46. S. Zinatloo-Ajabshir and M. Salavati-Niasari (2017). Photo-catalytic degradation of erythrosine and eriochrome black T dyes using Nd2Zr2O7 nanostructures prepared by a modified Pechini approach. Sep. Purif. Technol. 179, 77–85.

    Article  CAS  Google Scholar 

  47. S. H. Hasan, P. Srivastava, and M. Talat (2009). Biosorption of Pb (II) from water using biomass of Aeromonas hydrophila: central composite design for optimization of process variables. J. Hazard. Mater. 168 (2–3), 1155–1162.

    Article  CAS  PubMed  Google Scholar 

  48. M. Mouelhi, I. Marzouk, and B. Hamrouni (2016). Optimization studies for water defluoridation by adsorption: application of a design of experiments. Desalin. Water Treat. 57 (21), 9889–9899.

    Article  CAS  Google Scholar 

  49. A. Baskar and P. S. Shabudeen (2015). Factorial design of experiment model enables to optimize the variables in wastewater decolorization process by using areca husk activated carbon fibre. J. Chem. Pharm. Res. 7 (4), 1500–1511.

    Google Scholar 

Download references

Acknowledgements

Muhammad Farooque Lanjwani would like to thanks to Turkey Burslary for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Farooque Lanjwani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanjwani, M.F., Khuhawar, M.Y., Khuhawar, T.M.J. et al. Photocatalytic Degradation of Eriochrome Black T Dye by ZnO Nanoparticles Using Multivariate Factorial, Kinetics and Isotherm Models. J Clust Sci 34, 1121–1132 (2023). https://doi.org/10.1007/s10876-022-02293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02293-8

Keywords

Navigation