Skip to main content
Log in

Zirconium Doped Copper Ferrite (CuFe2O4) Nanoparticles for the Enhancement of Visible Light-Responsive Photocatalytic Degradation of Rose Bengal and Indigo Carmine Dyes

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, the Zr doped CuFe2O4 nanoparticles were prepared with different concentrations of zirconium ions through the chemical precipitation method. The Zr ion are added as Zr(x wt%):CuFe2(100-xwt%)O4 with (x = 0, 1, 3, 5). The crystal structure and phase were identified by XRD characterization. From the XRD the average crystallite sizes of the synthesized material were calculated and are obtained as 33 nm, 34 nm, 38 nm, and 42 nm. FT-IR characterization was taken to find the functional groups present in the material. The optical properties and corresponding optical band gap were determined by UV-DRS and PL studies. The bandgap was found to be 1.39 eV, 1.56 eV, 1.80 eV, and 1.97 eV for 0%, 1%, 3%, and 5% Zr doped CuFe2O4 nanoparticles respectively. The surface morphology is studied by SEM analysis. EDAX is used for the elemental composition analysis of the prepared materials. Further, the photocatalytic performances were studied with Rose Bengal (RB) and Indigo Carmine (IC) textile dyes. The maximum degradation percentage was obtained as 88% for RB dye and 71% for IC dye with 5wt% Zr doped CuFe2O4 nanoparticles within 120 min. The mineralization of the degraded dye solution was confirmed by the Chemical Oxygen Demand (COD) technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. C. Vandevivere, R. Bianchi, and W. Verstraete (1998). Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J. Chem. Technol. Biotechnol. 72 (4), 289–302.

    Article  CAS  Google Scholar 

  2. J. C. Sin and S. M. Lam (2016). Hydrothermal synthesis of europium-doped flower-like ZnO hierarchical structures with enhanced sunlight photocatalytic degradation of phenol. Mater. Lett. 182, 223–226.

    Article  CAS  Google Scholar 

  3. R. A. Khataee, A. Karimi, R. D. C. Soltani, M. Safarpour, Y. Hanifehpour, and S. W. Joo (2014). Europium-doped ZnO as a visible light responsive nanocatalyst: Sonochemical synthesis, characterization and response surface modeling of photocatalytic process. Appl. Catal. A-Gen 488, 160–170.

    Article  CAS  Google Scholar 

  4. V. Augugliaro, C. Baiocchi, A. B. Prevot, E. Grací-López-López, V. Loddo, S. Malato, and E. Pramauro (2002). Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation. Chemosphere 49 (10), 1223–1230.

    Article  CAS  PubMed  Google Scholar 

  5. J. Li and P. L. Bishop (2002). In situ identification of azo dye inhibition effects on nitrifying biofilms using microelectrodes. Water Sci. Technol. 46 (1–2), 207–214.

    Article  CAS  PubMed  Google Scholar 

  6. F. M. Drumond Chequer, V. D. P. Venancio, M. D. L. P. Bianchi, and L. M. Greggi Antunes (2012). Genotoxic and mutagenic effects of erythrosine B, a xanthene food dye, on HepG2 cells. Food Chem. Toxicol. 50 (10), 3447.

    Article  CAS  Google Scholar 

  7. J. L. Kambey, A. P. Farrell, and L. I. Bendell-Young (2001). Influence of illegal gold mining on mercury levels in fish of North Sulawesi’s Minahasa Peninsula, (Indonesia). Environ. Pollut. 114 (3), 299–302.

    Article  CAS  PubMed  Google Scholar 

  8. S. Panigrahi (1993). Bioassay of mycotoxins using terrestrial and aquatic, animal and plant species. Food Chem. Toxicol. 31 (10), 767–790.

    Article  CAS  PubMed  Google Scholar 

  9. P. Mpountoukas, A. Pantazaki, E. Kostareli, P. Christodoulou, D. Kareli, S. Poliliou, and T. Lialiaris (2010). Cytogenetic evaluation and DNA interaction studies of the food colorants amaranth, erythrosine and tartrazine. Food Chem. Toxicol. 48 (10), 2934–2944.

    Article  CAS  PubMed  Google Scholar 

  10. E. E. Ritchie, J. I. Princz, P. Y. Robidoux, and R. P. Scroggins (2013). Ecotoxicity of xanthene dyes and a non-chlorinated bisphenol in soil. Chemosphere 90 (7), 2129–2135.

    Article  CAS  PubMed  Google Scholar 

  11. J. Naitoh and B. M. Fox (1994). Severe hypotension, bronchospasm, and urticaria from intravenous indigo carmine. Urology 44 (2), 271–272.

    Article  CAS  PubMed  Google Scholar 

  12. K. A. Giri, T. S. Banerjee, G. Talukder, and A. Sharma (1986). Effects of dyes (indigo carmine, metanil yellow, fast green FCF) and nitrite in vivo on bone marrow chromosomes of mice. Cancer letters 30 (3), 315–320.

    Article  CAS  PubMed  Google Scholar 

  13. J. Yang, T. G. Monk, and P. F. White (1991). Acute hemodynamic effects of indigo carmine in the presence of compromised cardiac function. J. Clin. Anesth. 3 (4), 320–323.

    Article  CAS  PubMed  Google Scholar 

  14. Y. Long, Y. Lu, Y. Huang, Y. Peng, Y. Lu, S. Z. Kang, and J. Mu (2009). Effect of C60 on the photocatalytic activity of TiO2 nanorods. J. Phys. Chem. C 113 (31), 13899–13905.

    Article  CAS  Google Scholar 

  15. G. Nagaraju, G. C. Shivaraju, G. Banuprakash, and D. Rangappa (2017). Photocatalytic activity of ZnO nanoparticles: synthesis via solution combustion method. Mater. Today: Proceed. 4 (11), 11700–11705.

    Google Scholar 

  16. V. V. Kumar, K. Gayathri, and S. P. Anthony (2016). Synthesis of α-MoO3 nanoplates using organic aliphatic acids and investigation of sunlight enhanced photodegradation of organic dyes. Mater. Res. Bull. 76, 147–154.

    Article  CAS  Google Scholar 

  17. S. M. Botsa, R. Dharmasoth, and K. Basavaiah (2018). Sonochemical assisted synthesis of CuO for degradation of nitrobenzene under visible light irradiation and antimicrobial activity. J. Nanosci. Technol. 4 (5), 467–470.

    Article  Google Scholar 

  18. W. Konicki, D. Sibera, E. Mijowska, Z. Lendzion-Bielun, and U. Narkiewicz (2013). Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. J. Colloid Interface Sci. 398, 152–160.

    Article  CAS  PubMed  Google Scholar 

  19. S. Singhal, R. Sharma, C. Singh, and S. Bansal (2013). Enhanced photocatalytic degradation of methylene blue using ZnFe2O4 /MWCNT composite synthesized by hydrothermal method. Indian J. Mater. Sci. 2013, 6.

    Google Scholar 

  20. M. M. Rashad, R. M. Mohamed, M. A. Ibrahim, L. F. M. Ismail, and E. A. Abdel-Aal (2012). Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources. Adv. Powder Technol. 23, 315–323.

    Article  CAS  Google Scholar 

  21. K. Vanheusden, W. L. Warren, J. A. Voigt, C. H. Seager, and D. R. Tallant (1995). Impact of Pb doping on the optical and electronic properties of ZnO powders. Appl. Phys. Lett. 67 (9), 1280–1282.

    Article  CAS  Google Scholar 

  22. M. KamelAttarKar, R. Fazaeli, F. Manteghi, and M. Ghahari (2019). Structural, optical, and isothermic studies of CuFe2O4 and Zn-doped CuFe2O4 nano ferrite as a magnetic catalyst for photocatalytic degradation of direct red 264 under visible light irradiation. Environ. Prog. Sustain. Energy 38 (4), 13109.

    Article  CAS  Google Scholar 

  23. B. S. Surendra (2018). Green engineered synthesis of Ag-doped CuFe2O4: Characterization, cyclic voltammetry and photocatalytic studies. J. Sci-Adv. Mater. Dev. 3 (1), 44–50.

    Google Scholar 

  24. M. N. Arifin, K. M. R. Karim, H. Abdullah, and M. R. Khan (2019). Synthesis of titania doped copper ferrite photocatalyst and its photo activity towards methylene blue degradation under visible light irradiation. Bull. Chem. React. Eng. Catal. 14 (1), 219.

    Article  CAS  Google Scholar 

  25. K. Elayakumar, A. Manikandan, A. Dinesh, K. Thanrasu, K. K. Raja, R. T. Kumar, and A. Baykal (2019). Enhanced magnetic property and antibacterial biomedical activity of Ce3+ doped CuFe2O4 spinel nanoparticles synthesized by sol-gel method. J. Magn. Magn. Mater. 478, 140–147.

    Article  CAS  Google Scholar 

  26. V. Manikandan, A. Vanitha, E. R. Kumar, and J. Chandrasekaran (2017). Effect of In substitution on structural, dielectric and magnetic properties of CuFe2O4 nanoparticles. J. Magn. Magn. Mater. 432, 477–483.

    Article  CAS  Google Scholar 

  27. M. A. Haija, G. Basina, F. Banat, and A. I. Ayesh (2019). Adsorption and gas sensing properties of CuFe2O4 nanoparticles. Mater. Sci-Poland 37 (2), 289–295.

    Article  CAS  Google Scholar 

  28. M. H. Habibi and H. J. Parhizkar (2014). FTIR and UV–vis diffuse reflectance spectroscopy studies of the wet chemical (WC) route synthesized nano-structure CoFe2O4 from CoCl2 and FeCl3. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 127, 102–106.

    Article  CAS  Google Scholar 

  29. M. A. El-Sayed (2002). Influence of zinc content on some properties of Ni–Zn ferrites. Ceram. Int. 28 (4), 363–367.

    Article  CAS  Google Scholar 

  30. A. Singh, S. Jauhar, V. Kumar, J. Singh, and S. Singhal (2015). Synthesis of zinc substituted cobalt ferrites via reverse micelle technique involving in situ template formation: a study on their structural, magnetic, optical and catalytic properties. Mater. Chem. Phys. 156, 188–197.

    Article  CAS  Google Scholar 

  31. A. Singh, A. Goyal, and S. Singhal (2014). Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitro aromatic compounds and photo-oxidative degradation of toxic dyes. Nanoscale 6 (14), 7959–7970.

    Article  CAS  PubMed  Google Scholar 

  32. N. Kezzim, A. Abdi. Nasrallah, and M. Trari (2011). Visible light induced hydrogen on the novel hetero-system CuFe2O4/TiO2. Energy Convers. Manag. 52 (8–9), 2800–2806.

    Article  CAS  Google Scholar 

  33. S. Sakthi. Karunakaran, P. Gomathisankar. Raadha, and P. Vinayagamoorthy (2013). Nanostructures and optical, electrical, magnetic, and photocatalytic properties of hydrothermally and sono-chemically prepared CuFe2O4/SnO2. RSC Adv. 3 (37), 16728–16738.

    Article  CAS  Google Scholar 

  34. X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong (2001). Photoluminescence and cathode-luminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl. Phys. Lett. 78 (16), 2285–2287.

    Article  CAS  Google Scholar 

  35. Z. L. Wang (2004). Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter 16 (25), R829.

    Article  CAS  Google Scholar 

  36. S. Gnanam and V. Rajendran (2013). Facile hydrothermal synthesis of alpha manganese sesquioxide (α-Mn2O3) nanodumb-bells: structural, magnetic, optical and photocatalytic properties. J. Alloys Compd. 550, 463–470.

    Article  CAS  Google Scholar 

  37. M. S. Amulya, H. P. Nagaswarupa, M. A. Kumar, C. R. Ravikumar, K. B. Kusuma, and S. C. Prashantha (2021). Evaluation of bifunctional applications of CuFe2O4 nanoparticles synthesized by a sonochemical method. J. Phys. Chem. Solids 148, 109756.

    Article  CAS  Google Scholar 

  38. S. Anandan, T. Selvamani, G. G. Prasad, A. M. Asiri, and J. J. Wu (2017). Magnetic and catalytic properties of inverse spinel CuFe2O4 nanoparticles. J. Magn. Magn. Mater. 432, 437–443.

    Article  CAS  Google Scholar 

  39. S. Munir, A. Rasheed, S. Zulfiqar, M. Aadil, P. O. Agboola, I. Shakir, and M. F. Warsi (2020). Synthesis, characterization and photocatalytic parameters investigation of a new CuFe2O4/Bi2O3 nanocomposite. Ceram. Int. 46 (18), 29182–29190.

    Article  CAS  Google Scholar 

  40. M. A. Othman, I. Haija, J. H. Ismail, and F. Zain (2019). Preparation and catalytic performance of CuFe2O4 nanoparticles supported on reduced graphene oxide (CuFe2O4/rGO) for phenol degradation. Mater. Chem. Phys 238, 121931.

    Article  CAS  Google Scholar 

  41. K. Ravichandran, K. S. Seelan, P. Kavitha, and S. Sriram (2019). Influence of Cu+ g-C3N4 incorporation on the photocatalytic dye decomposition of ZnO film coated on stainless steel wire meshes. J. Mater. Sci. Mater. Electron 30 (22), 19703–19717.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Thiruneelakandan or J. Joseph prince.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dayana, P.N., Abel, M.J., Inbaraj, P.F.H. et al. Zirconium Doped Copper Ferrite (CuFe2O4) Nanoparticles for the Enhancement of Visible Light-Responsive Photocatalytic Degradation of Rose Bengal and Indigo Carmine Dyes. J Clust Sci 33, 1739–1749 (2022). https://doi.org/10.1007/s10876-021-02094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02094-5

Keywords

Navigation