Skip to main content
Log in

Eco-friendly Approach: Synthesis of Novel Green TiO2 Nanoparticles for Degradation of Reactive Green 19 Dye and Replacement of Chemical Synthesized TiO2

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In the present research work, a novel and green TiO2 as an excellent photocatalyst has been synthesized and a comparative study of its structural, morphological and optical properties has been carried out with that of chemical synthesized. Green TiO2 has been synthesized using Titanium(IV)-iso-propoxide as a precursor and Lagenaria siceraria leaf extract has been used as a reducing and capping agent. Photocatalytic activity results indicate that TiO2 nanoparticles synthesized by green method exhibit excellent percentage removal (98.88%) of RG-19 dye in acidic medium as compared to chemical synthesized TiO2 sample which exhibits only 88.55% removal of dye. Higher apparent rate constant (0.02802 min−1) of photocatalytic reaction for green synthesized TiO2 nanoparticles as compared to that of chemical synthesized with apparent rate constant (0.0154 min−1), leads to the lower incubation time i.e., 60 min for green synthesized and 120 min for chemical synthesized. TiO2 nanoparticles synthesized via green synthesis offer high and fast removal of RG-19 dye as compared to chemical route. This study explores the green chemistry based TiO2 as an efficient photocatalyst with outstanding photocatalytic performance, which may open a new perspective for the preparation of excellent photocatalyst with cost-effective and environmentally friendly alternative to chemical and physical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. H. A. Nguyen, V. V. T. Padil, V. I. Slaveykova, M. Černík, and A. Ševců (2018). Nanoscale Res. Lett. 13.

  2. V. N. Kalpana, and V. Devi Rajeswari (2018). Bioinorg. Chem. Appl. 2018, 1.

    Article  CAS  Google Scholar 

  3. S. S. Muniandy, N. H. Mohd Kaus, Z. T. Jiang, M. Altarawneh, and H. L. Lee (2017). RSC Adv. 7, 48083.

    Article  CAS  Google Scholar 

  4. J. Singh, T. Dutta, K. H. Kim, M. Rawat, P. Samddar, and P. Kumar (2018). J. Nanobiotechnol. 16, 84.

    Article  CAS  Google Scholar 

  5. J. Singh, V. Kumar, K. H. Kim, and M. Rawat (2019). Environ. Res. 177, 108569.

    Article  CAS  Google Scholar 

  6. J. Singh, S. Kumar, A. Alok , S. K. Upadhyay, M. Rawat , D. C. Tsang, and K. H. Kim (2019). J. Clean Prod. 214, 1061.

    Article  CAS  Google Scholar 

  7. J. Singh, V. Kumar, S.S. Jolly, K. H. Kim, M. Rawat, D. Kukkar, and F.Y. Tsang (2019). J. Ind. Eng. Chem. 80, 247.

    Article  CAS  Google Scholar 

  8. S. P. Goutam, G. Saxena, V. Singh, A. K. Yadav, R. N. Bharagava, and K. B. Thapa (2017). Chem. Eng. J. 336, 386.

    Article  CAS  Google Scholar 

  9. V. Patidar, and J. Preeti (2017). Int. Res. J. Eng. Technol. 4, 470.

    Google Scholar 

  10. P. Kantheti, and P. Alapati (2018). Int. J. Chem. Stud. 6, 670.

    Google Scholar 

  11. T. Santhoshkumar, A. A. Rahuman, C. Jayaseelan, G. Rajakumar, S. Marimuthu, A. V. Kirthi, K. Velayutham, J. Thomas, J. Venkatesan, and S. K. Kim (2014). Asian Pac. J. Trop. Med. 7, 968.

    Article  CAS  Google Scholar 

  12. K.G. Rao, A. CH, K.V. Rao, S. C. Chakra, and P. Tambur (2015). Int. J. Adv. Res. Phys. Sci. 2, 28.

    Google Scholar 

  13. S. Senthilkumar, and A. Rajendran (2018). Res. Chem. Intermed. 44, 5923.

    Article  CAS  Google Scholar 

  14. A. Naeimi, M. Honarmand, and A. Sedri (2019). Ultrason. Sonochem. 50, 331.

    Article  CAS  Google Scholar 

  15. A. Naeimi, M. Payandeh, A. R. Ghara, and F. E. Ghadi (2020). Carbohydr. Polym. 240, 116315.

    Article  CAS  Google Scholar 

  16. V. N. Kalpana, C. Payel, and V. Devi Rajeswari (2017). Res. J. Chem. Environ. 21, 14.

    CAS  Google Scholar 

  17. V. N. Kalpana, and V. Devi Rajeswari (2018). Mater. Res. Express 5, 115406.

    Article  CAS  Google Scholar 

  18. S. Abbasi, M. S. E. Kakhki, and M. Tahari (2017). J. Mater. Sci. Sci.28, 15306.

    CAS  Google Scholar 

  19. S. Abbasi (2016). Iran J. Environ. Health 9, 433.

    Google Scholar 

  20. A. Ghaderi, S. Abbasi, and F. Farahbod (2018). Mater. Res. Express 5, 6. https://doi.org/10.1088/2053-1591/aacd40

    Article  CAS  Google Scholar 

  21. S. Abbasi, and M. Hasanpour (2017). J. Mater. Sci. Mater. Electron. 28, 1307.

    Article  CAS  Google Scholar 

  22. D. A. H. Hanaor, and C. C. Sorrell (2010). J. Mater. Sci. 46, 855.

    Article  CAS  Google Scholar 

  23. S. Abbasi (2019). Environ. Monit. Assess. 191, 206.

    Article  CAS  Google Scholar 

  24. S. Abbasi (2018). Mater. Res. Express 5, 6. https://doi.org/10.1088/2053-1591/aac7f4.

    Article  CAS  Google Scholar 

  25. S. Abbasi, M. Hasanpour, F. Ahmadpoor, M. Sillanpaa, D. Daston, and A. Achour (2019). Int. J. Environ. An. Ch. 9, 1. https://doi.org/10.1080/03067319.2019.1662414

    Article  CAS  Google Scholar 

  26. S. Kalyanasundaram, and M. J. Prakash (2015). Int. Lett. Chem. Phys. Astron. 50, 80.

    Article  Google Scholar 

  27. H. Kaur, S. Kumar, N. K. Verma, and P. Singh (2018). J. Mater. Sci. 29, 16120.

    CAS  Google Scholar 

  28. R. Jenkins, R. L. Snyder, Introduction to X-Ray Powder Diffractometry, 1st ed. (John Wiley and Sons: New York, USA, 1996), pp. 544.

  29. J. Tauc (1968). Mater. Res. Bull. 3, 37.

    Article  CAS  Google Scholar 

  30. S. Abbasi, F. Ahmadpoor, M. Imani, and M. S. E. Kakhki (2020). Int. J. Environ. An. Ch. 100, 225.

    Article  CAS  Google Scholar 

  31. S. Abbasi, S. M. Zebarjad, S. H. N. Baghban, and A. Youssef (2015). Synth. React. Inorg. M. 45, 1539.

    Article  CAS  Google Scholar 

  32. B. E. Warren, X-Ray Diffraction. (Dover Publications: New York, USA, 1990).

  33. W. H. Bragg, and W. L. Bragg (1913). Proc. R. Soc. A Math. Phys. Eng. Sci. 88, 428.

    CAS  Google Scholar 

  34. R. Prajapati, M. Kalariya, S. Parmar, and N. Sheth (2010). J. Ayurveda Integr. Med. 1, 266.

    Article  Google Scholar 

  35. B. Anandh, A. Muthuvel, and M. Emayavaramban (2015). Int. Lett. Chem. Phys. Astron. 38, 35.

    Article  Google Scholar 

  36. K. Balachandaran, R. Venckatesh, and R. Sivaraj (2010). Int. J. Eng. Sci. Technol. 2, 3695.

    Google Scholar 

  37. S. El-Sherbiny, F. Morsy, M. Samir, and O. A. Fouad (2014). Appl. Nanosci. 4, 305.

    Article  CAS  Google Scholar 

  38. E. Petrucci, L. Di Palma, R. Lavecchia, and A. Zuorro (2015). J. Int. Eng. Chem. 26, 116.

    CAS  Google Scholar 

  39. N. Roozban, S. Abbasi, annd M. Ghazizadeh (2017). J. Mater. Sci. Mater. Electron. 28, 7343.

    Article  CAS  Google Scholar 

  40. S. Abbasi, and M. Hasanpour (2017). J. Mater. Sci. Mater. Electron. 28, 11846.

    Article  CAS  Google Scholar 

  41. 41. S. Abbasi, M. Hasanpour, and M.S.E. Kakhki (2017). J. Mater. Sci. Mater. Electron. 28, 9900.

    Article  CAS  Google Scholar 

  42. N. Roozban, S. Abbasi, and M. Ghazizadeh (2017). J. Mater. Sci. Mater. Electron. 28, 6047.

    Article  CAS  Google Scholar 

  43. S. Ganesan, G. Babu, D. Mahendran, P. Indra Arulselvi, N. Elangovan, N. Geetha, and P. Venkatachalam (2016). Ann. Phytomed. 5, 69.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab (India) for research lab facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanjeev Kumar or Mohit Rawat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Kaur, S., Kumar, S. et al. Eco-friendly Approach: Synthesis of Novel Green TiO2 Nanoparticles for Degradation of Reactive Green 19 Dye and Replacement of Chemical Synthesized TiO2. J Clust Sci 32, 1191–1204 (2021). https://doi.org/10.1007/s10876-020-01881-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01881-w

Keywords

Navigation