Skip to main content
Log in

Phytosynthesized Gold Nanoparticles-Bacillus thuringiensis (Bt–GNP) Formulation: A Novel Photo Stable Preparation Against Mosquito Larvae

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

It is well-known that the sunlight irradiation damages the spores and toxin produced by Bacillus thuringiensis (Bt), which leads to loss of their insecticidal activity. This photodegradation problem is addressed in the present investigation by use of green phytosynthesized gold nanoparticles (GNP) as a photoprotectant. The efficiency of Bt with GNP before and after exposing to sunlight was evaluated against the larvae of Aedes aegypti and Anopheles subpictus. The bioassay results focused that after sunlight irradiation the Bt significantly lose their activity for Ae. aegypti (23.13%) and An. subpictus (27.08%). Although the individual GNP showed very less activity against tested larvae, it was observed that in combination with Bt it significantly enhances activity and consequently reduced the LC50 of Bt–GNP. Similarly, even after irradiation of Bt–GNP formulation, the enhanced activity was found against Ae. aegypti (23.10%) and An. subpictus (27.24%). Henceforth in the case of Bt–GNP formulation, the GNP it was not only protecting the Bt from sunlight but enhances its larvicidal potential. The interactions between the GNP and Bt toxin which might be the main reason to protect the Bt from sunlight and can help to locate the Bt toxin at the target site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. G. Benelli and M. F. Duggan (2018). Acta Tropica 182, 80–91.

    Article  PubMed  Google Scholar 

  2. G. Benelli (2015). Parasitol. Res. 114, 2801–2805.

    Article  PubMed  Google Scholar 

  3. A. De, R. Bose, A. Kumar, and S. Mozumdar, Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles (Springer, 2014), pp. 5–6.

  4. A. Bravo, S. S. Gill, and M. Soberón, in Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (eds.), In Comprehensive Molecular Insect Science (Elsevier, 2005), pp. 175–206.

  5. G. Benelli (2018). Acta Tropica 178, 73–80.

    Article  CAS  PubMed  Google Scholar 

  6. R. Marzban (2012). J. Biopestic. 5, 144.

    Google Scholar 

  7. G. Benelli, F. Maggi, M. Govindarajan, L. Cappellacci, A. A. Alarfaj, R. Pavela, B. Vaseeharan, S. Kumar, J.-S. Hwang, K. Murugan, A. Hofer, R. Petrelli, M. R. Youssefi, and A. Higuchi (2017). Environ. Sci. Pollut. Res.. https://doi.org/10.1007/s11356-017-9752-4.

    Article  Google Scholar 

  8. L. A. Lacey and S. Singer (1982). Mosq. News. 42, 537–543.

    Google Scholar 

  9. R. L. Groves and M. V. Meisch (1996). J. Am. Mosq. Control. Assoc. 12, 220–224.

    CAS  PubMed  Google Scholar 

  10. World Health Organization (2009). Global insecticide use for vector-borne disease control. p. 4.

  11. H. van den Berg, M. Zaim, R. S. Yadav, A. Soares, B. Ameneshewa, A. Mnzava, J. Hii, A. P. Dash, and M. Ejov (2012). Environ. Health. Perspect. 120, 577–582.

    Article  PubMed  PubMed Central  Google Scholar 

  12. M. Pusztai, P. Fast, L. Gringorten, H. Kaplan, T. Lessard, and P. R. Carey (1991). J. Biochem. 273, 43–47.

    Article  CAS  Google Scholar 

  13. M. Pozsgay, P. Fast, H. Kaplan, and P. R. Carey (1987). J. Inv. Pathol. 50, 246–253.

    Article  CAS  Google Scholar 

  14. A. Paul, L. C. Harrington, L. Zhang, and J. G. Scott (2005). J. Am. Mosq. Control. Assoc. 21, 305–309.

    Article  CAS  PubMed  Google Scholar 

  15. S. Boyer, M. Paris, S. Jego, G. Lemperiere, and P. Ravanel (2012). Biol. Control. 62, 75–81.

    Article  Google Scholar 

  16. H. F. Owusu, N. Chitnis, and P. Müller (2017). Scientific. Reports. 7, 3667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J. Hemingway and H. Ranson (2000). Annu. Rev. Entomol. 45, 371–391.

    Article  CAS  PubMed  Google Scholar 

  18. M. C. Daniel and D. Astruc (2004). Chem. Rev. 104, 293–346.

    Article  CAS  PubMed  Google Scholar 

  19. Z. Cheng, A. Al Zaki, J. Z. Hui, V. R. Muzykantov, and A. Tsourkas (2012). Science 338, 903–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. Rana, A. Bajaj, R. Mout, and V. M. Rotello (2012). Adv. Drug. Deliv. Rev. 64, 200–216.

    Article  CAS  PubMed  Google Scholar 

  21. H. P. Borase, C. D. Patil, R. K. Suryawanshi, S. H. Koli, B. V. Mohite, Giovanni Benelli, and S. V. Patil (2017). Bioprocess Biosyst. Eng. 40, 1437–1446.

    Article  CAS  PubMed  Google Scholar 

  22. V. Karthika, A. Arumugam, K. Gopinath, P. Kaleeswarran, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). J. Photochem. Photobiol. B, Biol. 167, 189–199.

    Article  CAS  Google Scholar 

  23. P. Das, B. Chetia, R. Prasanth, J. Madhavan, G. Singaravelu, G. Benelli, and K. Murugan (2017). J. Clust. Sci. 28, 2269–2277.

    Article  CAS  Google Scholar 

  24. N. Suganthy, V. S. Ramkumar, A. Pugazhendhi, G. Benelli, and G. Archunan (2017). Environ. Sci. Pollut. Res.. https://doi.org/10.1007/s11356-017-9789-4.

    Article  Google Scholar 

  25. C. Balalakshmi, K. Gopinath, M. Govindarajan, R. Lokesh, A. Arumugam, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). J. Photochem. Photobiol. B, Biol. 173, 598–605.

    Article  CAS  Google Scholar 

  26. N. S. Alharbi, K. Bhakyaraj, M. Govindarajan, S. Mohan, S. Kadaikunnan, K. Gopinath, S. Kumuraguru, P. Kaleeswarran, J. M. Khaled, and G. Benelli (2017). J. Clust. Sci. 28, 507–517.

    Article  CAS  Google Scholar 

  27. G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, 1–2.

    Article  CAS  Google Scholar 

  28. J. Subramaniam, K. Murugan, C. Panneerselvam, K. Kovendan, P. Madhiyazhagan, D. Dinesh, P. M. Kumar, B. Chandramohan, U. Suresh, R. Rajaganesh, and M. S. Alsalhi (2016). Environ. Sci. Pollut. Res. 23, 7543–7558.

    Article  CAS  Google Scholar 

  29. C. D. Patil, H. P. Borase, R. K. Suryawanshi, and S. V. Patil (2016). Enzym. Microb. Technol. 92, 18–25.

    Article  CAS  Google Scholar 

  30. H. P. Borase, C. D. Patil, R. B. Salunkhe, R. K. Suryawanshi, B. K. Salunke, and S. V. Patil (2014). Int. J. Cosmet. Sci. 36, 571–578.

    Article  CAS  PubMed  Google Scholar 

  31. G. Benelli and H. Mehlhorn (2016). Parasitol. Res. 115, 1747–1754.

    Article  PubMed  Google Scholar 

  32. World Health Organization (1981). Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides.

  33. C. D. Patil, S. V. Patil, B. K. Salunke, and R. B. Salunkhe (2011). Parasitol. Res. 109, 1179–1187.

    Article  PubMed  Google Scholar 

  34. W. W. Abbott (1925). J. Econ. Entomol. 18, 265–267.

    Article  CAS  Google Scholar 

  35. K. Murugan, G. Benelli, C. Panneerselvam, J. Subramaniam, T. Jeyalalitha, D. Dinesh, M. Nicoletti, J.-S. Hwang, U. Suresh, and P. Madhiyazhagan (2015). Exp. Parasitol. 153, 129–138.

    Article  CAS  PubMed  Google Scholar 

  36. S. Raj, S. Jose, U. Sumod, and M. Sabitha (2012). J. Pharm. Bioallied Sci. 4, 186–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. H. P. Borase, C. D. Patil, R. B. Salunkhe, R. K. Suryawanshi, B. S. Kim, V. A. Bapat, and S. V. Patil (2015). Appl. Biochem. Biotechnol. 175, 3479–3493.

    Article  CAS  PubMed  Google Scholar 

  38. C. D. Patil, R. K. Suryawanshi, H. P. Borase, C. P. Narkhede, B. K. Salunke, and S. V. Patil (2015). Nat. Product. Res. 29, 2350–2354.

    Article  CAS  Google Scholar 

  39. D. E. Pinnock, R. J. Brand, and J. E. Milstead (1971). J. Invert. Pathol. 18, 405–411.

    Article  Google Scholar 

  40. E. S. Raun, G. R. Sutter, and M. A. Revelo (1966). J. Invert. Pathol. 8, 365–375.

    Article  Google Scholar 

  41. V. M. Griego and K. D. Spence (1978). Appl. Environ. Microbiol. 35, 906–910.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Y. Chen, Y. Deng, J. Wang, J. Cai, and G. Ren (2004). J. Gen. Appl. Microbiol. 50, 183–188.

    Article  CAS  PubMed  Google Scholar 

  43. P. Bailey, G. Baker, and G. Caon (1996). Austral Entomol. 35, 297–302.

    Article  Google Scholar 

  44. E. Cohen, H. Rozen, T. Joseph, S. Braun, and L. Margulies (1991). J. Invert. Pathol. 57, 343–351.

    Article  CAS  Google Scholar 

  45. O. N. Morris (1983). Can. Ent. 115, 1215–1227.

    Article  Google Scholar 

  46. L. Margulies, H. Rozen, and E. Cohen (1985). Nature 315, 658–659.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to University Grant Commission and Department of Science and Technology, New Delhi for financial support to make research facility at Department of School of Life Sciences, under the UGC-SAP and DST-FIST program. Authors also acknowledge that this work is a small effort in vector control in response to inspiration created by Dr. AP Dash, N Valecha, Dr. Anvikar and A Kumar. Article “Malaria in India: challenges and opportunities”. J Biosci. 2008, 33(4):583–92.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish V. Patil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.V., Patil, C.D., Narkhede, C.P. et al. Phytosynthesized Gold Nanoparticles-Bacillus thuringiensis (Bt–GNP) Formulation: A Novel Photo Stable Preparation Against Mosquito Larvae. J Clust Sci 29, 577–583 (2018). https://doi.org/10.1007/s10876-018-1368-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1368-4

Keywords

Navigation