Skip to main content
Log in

Solution, Solid-State Two Step Synthesis and Optical Properties of ZnO and SnO2 Nanoparticles and Their Nanocomposites with SiO2

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Nanostructure luminescent ZnO and SnO2 materials are prepared by a two-step solid-state method based on the solution preparation of the macromolecular precursors ZnCl2·Chitosan and SnCl2·Chitosan having different ratios (1:1, 1:5 and 1:10), their pyrolysis under air at 800 °C. The pyrolytic ZnO and SnO2 nanomaterials show a dependence of the particle size, morphology and luminescent properties with the ratio [metal/polymer] in the MCl2·Chitosan precursors. Thus, ZnO semiconductor materials exhibit luminescence spectra with several emission at 440 nm corresponds to a radiative transition of an electron from the shallow donor level of oxygen vacancies, and the zinc interstitial, to the valence band. On the other hand, the photoluminescence spectrum of the nanostructured SnO2 shows an intense blue luminescence at a wavelength of 420 nm which may be attributed to oxygen-related defects that have been introduced during the growth process of the nanoparticles. Additionally, whereas SnO2 was successfully incorporated into SiO2 structure (SnO2//SiO2) by pyrolysis of solid-state mixtures of the precursors SnCl2·Chitosan in the presence of SiO2, the same reaction carried out with ZnCl2·Chitosan precursors led to a mixture of Zn2SiO4 and SiO2. Thus, this new methodology yields nanostructured semiconductor materials, ZnO and SnO2, suitable for optoelectronic and sensor solid-state devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. K. Joshi and J. J. Schneider (2012). Chem. Soc. Rev. 41, 5285–5312.

    Article  CAS  Google Scholar 

  2. P. Poizot, L. S. Grugeon, L. Dupont, and J. M. Tarascon (2000). Nature 407, 496–499.

    Article  CAS  Google Scholar 

  3. Y. Li and G. A. Somorjai (2010). NanoLetter 10, 2289–2295.

    Article  CAS  Google Scholar 

  4. Q. Zhang, H. Y. Wang, J. Xinli, and Y. Yang (2013). Nanoscale 5, 7175–7183.

    Article  CAS  Google Scholar 

  5. H. Wang and A. L. Rogach (2014). Chem. Mater. 26, 123–133.

    Article  CAS  Google Scholar 

  6. M. Ahmad and J. J. Zhu (2011). J. Mater. Chem. 21, 599–615.

    Article  CAS  Google Scholar 

  7. A. Tricoli, M. Righettoni, and A. Teleki (2010). Angew. Chem. Int. Ed. 49, 7632–7659.

    Article  CAS  Google Scholar 

  8. V. Juttukonda, R. L. Paddock, J. E. Raymond, D. Denomme, A. E. Richardson, L. Slusher, and B. D. Fahlman (2006). J. Am. Chem. Soc. 128, 420–421.

    Article  CAS  Google Scholar 

  9. J. Q. Sun, J. S. Wang, X. C. Wu, G. S. Zhang, J. Y. Wei, S. Q. Zhang, H. Li, and D. R. Chen (2006). Cryst. Growth Des. 6, 1584–1587.

    Article  CAS  Google Scholar 

  10. M. Salvat-Niasari, N. Mir, and F. Davar (2010). Inorg. Chim. Acta 363, 1719–1726.

    Article  Google Scholar 

  11. M. Zereie, A. Gholami, M. Bahrami, and A. H. Rezaei (2013). Mater. Lett. 91, 255–257.

    Article  Google Scholar 

  12. M. Hossienifard, L. Hashemi, V. Amani, K. Kalatech, and A. Morsali (2011). J. Inorg. Organomet. Polym. 21, 527–533.

    Article  CAS  Google Scholar 

  13. C. Díaz and M. L. Valenzuela in H. S. Nalwa (ed.), Encyclopedia of Nanoscience and Nanotechnology, vol. 16 (American Scientific, Valencia, 2011), pp. 239–256.

    Google Scholar 

  14. C. Díaz and M. L. Valenzuela (2006). J. Inorg. Organomet. Polym. 16, 419–435.

    Article  Google Scholar 

  15. C. Díaz, M. L. Valenzuela, L. Zuñiga, and C. O’Dwyer (2009). J. Inorg. Organomet. Polym. Mater. 19, 507–520.

    Article  Google Scholar 

  16. C. Díaz, M. L. Valenzuela, V. Lavayen, and C. O’Dwyer (2012). Inorg. Chem. 51, 6228–6236.

    Article  Google Scholar 

  17. C. Díaz, G. A. Carriedo, M. L. Valenzuela, L. Zuñiga, and C. O’Dwyer (2012). J. Inorg. Organomet. Polym. Mater. 22, 447–454.

    Article  Google Scholar 

  18. C. Díaz, M. L. Valenzuela, S. Cáceres, and C. O´Dwyer (2013). J. Mater. Chem. A 11, 1566–1572.

    Google Scholar 

  19. W. S. Wan-Ngah, L. C. Teong, and M. A. Hanafiah (2011). Carbohydr. Polym. 83, 1446–1452.

    Article  CAS  Google Scholar 

  20. I. Aranaz, M. Mengibar, R. Harris, I. Paños, B. Miralles, N. Acosta, G. Galed, and A. Heras (2009). Curr. Chem. Biol. 3, 203–230.

    CAS  Google Scholar 

  21. K. Okuyama, K. Noguchi, T. Miyazawa, T. Yui, and K. Ogawa (1997). Macromolecules 30, 5849–5855.

    Article  CAS  Google Scholar 

  22. K. Mazeau, W. T. Winter, and J. H. Chanzy (1994). Macromolecules 27, 7606–7612.

    Article  CAS  Google Scholar 

  23. A. Muzzarelli Chitin (Pergamon Press, New York, 1973).

    Google Scholar 

  24. R. M. Majeti and R. Kumar (2000). React. Funct. Polym. 46, 1–27.

    Article  Google Scholar 

  25. M. Kong, X. G. Chen, K. Xing, and H. J. Park (2010). Int. J. Food Microbiol. 144, 51–63.

    Article  CAS  Google Scholar 

  26. G. Crini and P. M. Badot (2008). Prog. Polym. Sci. 33, 399–447.

    Article  CAS  Google Scholar 

  27. F. Chin, R. L. Tseng, and R. S. Juang (2010). J. Environ. Manag. 91, 798–806.

    Article  Google Scholar 

  28. A. A. Emara, M. A. Tawad, M. A. El-ghamry, and M. Z. Elsabee (2011). Carbohydr. Polym. 83, 192–202.

    Article  CAS  Google Scholar 

  29. K. Ozawa, K. Oka, and T. Yui (1993). Chem. Mater. 5, 726–728.

    Article  Google Scholar 

  30. S. Schlick (1986). Macromolecules 19, 192–195.

    Article  CAS  Google Scholar 

  31. M. Rinaudo (2006). Prog. Polym. Sci. 31, 603–632.

    Article  CAS  Google Scholar 

  32. A. Sine, B. O. Petersen, J. O. Duus, and T. Skrydstrup (2007). Inorg. Chem. 46, 4326–4334.

    Article  Google Scholar 

  33. L. Heux, J. Brugnerotto, J. Desbrieres, M. F. Versali, and M. Rinaudo (2000). Biomacromolecules 1, 746–751.

    Article  CAS  Google Scholar 

  34. D. De Brito and S. P. Campana-Filho (2007). Thermochim. Acta 465, 73–79.

    Article  Google Scholar 

  35. M. Anandam, S. Dinesh, and N. J. Krishnakumar (2017). Mater. Sci. Mater. Electron. 28, 2574–2585.

    Article  Google Scholar 

  36. M. Samadi, H. Asghari, A. Pourjavadi, and A. Z. Moshfegh (2013). Appl. Catal. A 466, 153–160.

    Article  CAS  Google Scholar 

  37. R. Vinodkumar, I. Navas, K. Porsezian, V. Ganesan, N. V. Unnikrishnan, and V. P. Pillai (2014). Spectrochim. Acta A 118, 724–732.

    Article  CAS  Google Scholar 

  38. K. Sowri-Babu, A. Ramachandra Reddy, C. Sujatha, V. Venugopal Reddy, and A. N. Mallika (2013). J. Adv. Ceram. 2, 260–265.

    Article  CAS  Google Scholar 

  39. J. P. Mathewa and G. Vargheseb (2012). Chin. Phys. B 21, 781041–781048.

    Google Scholar 

  40. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt (1996). Appl. Phys. Lett. 68, 403–405.

    Article  CAS  Google Scholar 

  41. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade (1996). J. Appl. Phys. 79, 7983–7990.

    Article  CAS  Google Scholar 

  42. A. Van Dijken, E. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink (2000). J. Phys. Chem. B 104, 1715–1723.

    Article  Google Scholar 

  43. A. Van Dijken, E. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink (2000). J. Lumin. 90, 123–128.

    Article  Google Scholar 

  44. A. Wood, M. Giersig, M. Hilgendorff, A. Vilas-Campos, L. M. Liz-Marzán, and P. Mulvaney (2003). Aust. J. Chem. 56, 1051–1057.

    Article  CAS  Google Scholar 

  45. D. C. Reynolds, D. C. Look, B. Jogai, and H. Morkoç (1997). Solid State Commun. 101, 643–646.

    Article  CAS  Google Scholar 

  46. S. A. Studenikin and M. Cocivera (2002). J. Appl. Phys. 91, 5060–5065.

    Article  CAS  Google Scholar 

  47. D. C. Reynolds, D. C. Look, and B. Jogai (2001). J. Appl. Phys. 89, 6189–6191.

    Article  CAS  Google Scholar 

  48. M. Liu, A. H. Kitai, and P. Mascher (1992). J. Lumin. 54, 35–42.

    Article  CAS  Google Scholar 

  49. B. Lin, Z. Fu, and Y. Jia (2001). Appl. Phys. Lett. 79, 943–975.

    Article  CAS  Google Scholar 

  50. P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, and S. Kaneco (2013). ACS Sustain. Chem. Eng. 1, 982–988.

    Article  CAS  Google Scholar 

  51. P. Chetri and A. Choudhury (2013). Physica E 47, 257–263.

    Article  CAS  Google Scholar 

  52. V. Rajendran and K. Anandan (2012). Mater. Sci. Semicond. Process. 15, 393–400.

    Article  CAS  Google Scholar 

  53. Y Ch HeR and J. Y. Hu (2006). Appl. Phys. Lett. 89, 043115-1–043115-3.

    Article  Google Scholar 

  54. B. Liu, C. W. Cheng, R. Chen, Z. X. Shen, H. J. Fan, and H. D. Sun (2010). J. Phys. Chem. 114, 3407–3410.

    CAS  Google Scholar 

  55. Z. C. Liu, H. R. Chen, W. M. Huang, J. L. Gu, W. B. Bu, Z. L. Hua, and J. L. Shi (2006). Micropor. Mesopor. Mater. 89, 270–275.

    Article  CAS  Google Scholar 

  56. F. Wang, V. N. Richard, S. P. Shieds, and W. E. Buhro (2014). Chem. Mater. 26, 5–21.

    Article  Google Scholar 

  57. E. Finney and R. Finke (2008). J. Colloid Interface Sci. 317, 351–374.

    Article  CAS  Google Scholar 

  58. C. Díaz and M. L. Valenzuela in H. S. Nalwa (ed.), Metallic Nanostructures Using Oligo and Polyphosphazenes as Template or Stabilizer in Solid State in Encyclopedia of Nanoscience and Nanotechnology (American Scientific Publishers, Valencia, 2010).

    Google Scholar 

  59. A. Bhattacharjee, A. Rooj, M. Roy, J. Kusz, and P. Guthich (2013). J. Mater. Sci. 48, 2961–2968.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.D. is grateful to Fondecyt (Project 1160241) for the funding. A.P.S. is grateful to FICYT (Projects SV-PA-13-ECOEMP-83 and FC-15-GRUPIN14-106), Universidad de Oviedo (Project UNOV-13-EMERG-GIJON-08) and the MINECO (Project CTQ2014-56345-P) for the funding. A.P.S.is also grateful to the COST action Smart Inorganic Polymers (SIPs-CM1302—http://www.sips-cost.org/home/index.html), and the Juan de la Cierva and Ramón y Cajal programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Valenzuela.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz, C., Valenzuela, M.L., Segovia, M. et al. Solution, Solid-State Two Step Synthesis and Optical Properties of ZnO and SnO2 Nanoparticles and Their Nanocomposites with SiO2 . J Clust Sci 29, 251–266 (2018). https://doi.org/10.1007/s10876-017-1324-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1324-8

Keywords

Navigation