Skip to main content
Log in

The Inclusion of Organometallic Derivatives of Cyclotriphosphazenes Inside SiO2 Matrix and Their Conversion to Nanostructured Metal-Oxides and Phosphates

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Organometallic derivatives of the cyclotriphosphazene N3P3[OC6H4CH2CN·TiClCp2]6 (1), N3P3(O6H5)5[OC6H4N·W(CO)5] (2), N3P3[OC6H4CH2CN·Mo(CO)5]6 (3), [N3P3(O6H5)5(OC5H4N·CpRu(PPh3)2)][PF6] (4), [N3P3(O2C12H8)2OC5H4N·Ag(PPh3)][OSO2CF3] (5), N3P3[OC6H5]5 [OC5H4N·Cu][PF6] (6) and N3P3[OC6H4CH2CN·CuCl]6[PF6]6 (7),were incorporated inside SiO2 through the sol–gel method. The metal–organic nanocomposites of the general formula N3P3[OC6H4CH2CN·TiClCp2]6·nSiO2 (G 1 ), N3P3[OC6H4N·W(CO)5nSiO2 (G 2 ), N3P3[OC6H4CH2CN·Mo(CO)5]6·nSiO2 (G 3 ), N3P3(O6H5)5OC5H4N·CpRu(PPh3)2][PF6nSiO2 (G 4 ), [N3P3(O2C12H8)2OC5H4N·Ag(PPh3)][OSO2CF3nSiO2 (G 5 ), N3P3[OC6H5]5[OC5H4N·Cu][PF6]·(SiO2) n (G 6 ), and N3P3[OC6H4CH2CN·CuCl]6[PF6]6·(SiO2) n (G 7 ), were characterized by IR spectroscopy; 12C, 31 P and 29Si MAS NMR measurements as well as UV–Visible diffuse reflectance spectra, indicating the presence of the respective organometallic derivatives of the cyclotriphosphazene incorporated into SiO2. Pyrolysis of these nanocomposites under air at 800 °C gives rise to nanostructured metal-oxides and metal phosphates incorporated into amorphous SiO2, with the presence in some cases of complexes phase mixtures. From some precursors, we obtained metal-oxides/phosphates nanoparticles separated from the SiO2 nanoparticles instead the oxides/phosphates nanoparticles inside the SiO2 matrix. Additionally and for comparison purposes, we used the compound N3P3[NH(CH2)3Si(OEt)3]6 as gelator. Nanocomposites (G′ 1 ), (G′ 2 ) and (G′ 3 ) exhibited mainly morphological differences while in some cases composition differences when using TEOS as gelator. Some simple metal-containing compounds as (O3SCF3)Ag(PPh3)(HOC5H4N), [CuCl2·NC5H4OH] and [CuCl2·NCCH2C6H4OH]—which are useful models of the most complexes (G 5 ), (G 6 ) and (G 7 ) were also prepared and incorporated in amorphous silica. Their pyrolytic products were compared with those of more complex cyclotriphosphazene analogous. Interestingly, the pyrolysis of the nanocomposite [(O3SCF3)Ag(PPh3)(HOC5H4N)][SiO2] n affords the firstly-reported materials containing Ag2O along with SiO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Walkers, I.P. Parkin, J. Mater. Chem. 19, 574–590 (2009)

    Article  Google Scholar 

  2. M. Meilikhov, K. Yusenko, D. Esken, S.A. Turner, G. Van Tendoloo, R.A. Fischer, Eur. J. Inorg. Chem. 3701–3714 (2010)

  3. B. Teo, X. Sun, Chem. Rev. 107, 1454–1532 (2007)

    Article  CAS  Google Scholar 

  4. G.B. Khomutov, V.V. Kislov, M.N. Antipirina, R.V. Gainutdinov, S.P. Gubin, A.Yy Obydenov, S.A. Pavlov, A.A. Rakhnyanskaya, A.N. Sergeev-Cherenkov, E.S. Soldatov, D.B. Suyatin, A.L. Toltikhina, A. S. Trifonov, T.V. Yurova, Microelectron. Eng. 69, 373–383 (2003)

    Google Scholar 

  5. C. Diaz, M.L. Valenzuela, in Metallic Nanostructures Using Oligo and Polyphosphazenes as Template or Stabilizer in Solid State in Encyclopedia of Nanoscience and Nanotechnology, Chap. 16, ed. by H.S Nalwa (American Scientific Publishers, New York, 2011), pp. 239–256 (For a discussion of solid-state method of to prepare nanoparticles)

  6. C.T. Kresge, M.E. Leonowics, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710–712 (1992)

    Article  CAS  Google Scholar 

  7. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowics, C.T. Kresge, K.D. Schmit, C.T. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higginns, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834–10843 (1992)

    Article  CAS  Google Scholar 

  8. K.J. Shea, D.A. Loy, MRS Bull. 26, 368–376 (2001)

    Google Scholar 

  9. K.J. Shea, D.A. Loy, O. Webster, J. Am. Chem. Soc. 114, 6700–6710 (1992)

    Article  CAS  Google Scholar 

  10. D.A. Loy, K.J. Shea, Chem. Rev. 95, 1431–1442 (1995)

    Article  CAS  Google Scholar 

  11. K. Moon Choi, K.J. Shea, J. Am. Chem. Soc. 116, 9052–9060 (1994)

    Article  Google Scholar 

  12. F. Del Monte, M.P. Morales, D. Levy, A. Fernandez, M. Ocaña, A. Roig, E. Molins, K.O. Grady, C.J. Serna, Langmuir 13, 3627–3634 (1997)

    Article  Google Scholar 

  13. C. Cannas, M.F. Casula, G. Concas, A. Corrias, D. Gatteschi, A. Falqui, A. Musinu, C. Sangregorio, G. Spano, J. Chem. Mater. 11, 3180–3187 (2001)

    Article  CAS  Google Scholar 

  14. W. Nie, G. Boulon, C. Mai, C. Esnouf, X. Runjuan, J. Zarzycki, Chem. Mater. 4, 216–222 (1992)

    Article  CAS  Google Scholar 

  15. G. De, J. Sol Gel. Sci. Technol. 11, 289–298 (1998)

    Article  CAS  Google Scholar 

  16. S. Sakka, H. Kozuka, J. Sol Gel. Sci. Technol. 13, 701–705 (1998)

    Article  CAS  Google Scholar 

  17. E.R. Leite, N.L. Carreño, E. Longo, F.M. Pontes, A. Barison, A.G. Ferreira, Y. Maniette, J.A. Varela, Chem. Mater. 14, 3722–3729 (2002)

    Article  CAS  Google Scholar 

  18. K.L. Fujdala, T. Don Tilley, Chem. Mater. 13, 1817–1827 (2001)

    Article  CAS  Google Scholar 

  19. V.S. Gurin, A.A. Alexeenko, V.B. Prakapenka, D.L. Kovalenko, K.V. Yumashev, P.V. Prokoshin, J. Mater. Sci. 14, 333–336 (2003)

    CAS  Google Scholar 

  20. B. Breitscheidel, J. Zieder, U. Schubert, Chem. Mater. 3, 559–566 (1991)

    Article  CAS  Google Scholar 

  21. Y. Yin, Y. Lu, Y. Sun, Y. Xia, Nano Lett. 2, 427–430 (2002)

    Article  CAS  Google Scholar 

  22. C.M. Lukehart, S.B. Milne, Chem. Mater. 10, 903–908 (1998)

    Article  CAS  Google Scholar 

  23. E. Lindner, A. Jager, T. Schneller, H.A. Mayer, Chem. Mater. 9, 81–90 (1997)

    Article  CAS  Google Scholar 

  24. B.K. Coltrain, W.T. Ferrar, C.J.T. Landry, T.R. Molaire, N. Zumbulyadis, Chem. Mater. 4, 358–364 (1992)

    Article  CAS  Google Scholar 

  25. M.C. Galliazzi, E. Montoneri, J. Inorg. Organomet. Polym. 7, 251–259 (1997)

    Article  Google Scholar 

  26. L. Crouzet, D. Leclerq, J. Mater. Chem. 10, 1195–1201 (2000)

    Google Scholar 

  27. Y. Chang, H.R. Allcock, Chem. Mater. 17, 4449–4454 (2005)

    Article  CAS  Google Scholar 

  28. M. Barbosa, C. Diaz, M.I. Toral, J. Retuert, Y. Martinez, J. Mater. Chem. 15, 1360–1368 (2005)

    Article  CAS  Google Scholar 

  29. P.L. Silvestrelli, M. Gleria, R. Milani, A. Boscoletto, J. Inorg. Organomet. Polym. Mater. 16, 327–341 (2006)

    Article  CAS  Google Scholar 

  30. C. Díaz, M.L. Valenzuela, L. Zuñiga, C. O’Dwyer, J. Inorg. Organomet. Polym. 19, 507–520 (2009)

    Article  Google Scholar 

  31. J. Jimenez, A. Laguna, M. Benouazzane, J.A. Sanz, C. Díaz, M.L. Valenzuela, P.G. Jones, Chem. Eur. J. 15, 13509–13520 (2009)

    Article  CAS  Google Scholar 

  32. C. Diaz, M.L. Valenzuela, D. Bravo, V. Lavayen, C. O’Dwyer, Inorg. Chem. 47, 11561–11569 (2008)

    Article  CAS  Google Scholar 

  33. C. Díaz, V. Lavayen, C. O’Dwyer, J. Solid State Chem. 183, 1595–1603 (2010)

    Article  Google Scholar 

  34. C. Díaz, M. Barbosa, Z. Godoy, Polyhedron 23, 1027–1035 (2004)

    Article  Google Scholar 

  35. C. Diaz, M.L. Valenzuela, Polyhedron 21, 909–915 (2002)

    Article  CAS  Google Scholar 

  36. Sh. Zhu, D. Zhang, X. Zhang, L. Zhang, X. Ma, X. Xiongwei, M. Cai, Microporous Mesoporous Mater. 126, 20–25 (2009)

    Article  CAS  Google Scholar 

  37. J. Yang, L. Zhu, J. Zhang, Y. Zhang, Y. Tang, React. Kinet. Catal. Lett. 91, 21–28 (2007)

    Article  CAS  Google Scholar 

  38. Y.Ch. Lee, S. Cheng, J. Chin. Chem. Soc. 53, 1355–1361(2006)

    Google Scholar 

  39. S. Bakardjieva, V. Stengl, L. Szatmary, J. Subrt, J. Lukac, N. Murafa, D. Niznansky, K. Cizek, J. Jirkovsky, N. Petrova, J. Mater. Chem. 16, 1709–1716 (2006)

    Article  CAS  Google Scholar 

  40. H. Pathan, S.K. Min, J.D. Desai, K.D. Jung, O.S. Joo, Mater. Chem. Phys. 97, 5–9 (2006)

    Article  CAS  Google Scholar 

  41. S. Ashraf, Ch.S. Blackman, G. Heyett, I. Parkin, J. Mater. Chem. 16, 3575–3582 (2006)

    Article  CAS  Google Scholar 

  42. M. Elisa, B.A. Sava, A. Volceanov, R.C.C. Monteriro, E. Alves, N. Franco, F.A. CostaOliveira, H. Fernandes, M.C. Ferro, J. Non Cryst, Solids 356, 495–501 (2010)

    CAS  Google Scholar 

  43. M. Vallet-Regi, C.V. Regel, A. Salinas, Eur. J. Inorg. Chem. 6, 1029–1042 (2003)

    Article  Google Scholar 

  44. T.R. Krawietz, P. Ling, K.E. Lotterhos, P.D. Torres, D.H. Barich, A. Clearfield, J.F. Haw, J. Am. Chem. Soc. 120, 8502–8511 (1998)

    Article  CAS  Google Scholar 

  45. J.H. Coetzee, T.N. Mashapa, N.M. Prinsloo, J.D. Rademan, Appl. Catal. 308, 204–209 (2006)

    Article  CAS  Google Scholar 

  46. L. Qu, Sh. Tie, Microporous Mesoporous Mater. 117, 402–405 (2009)

    Article  CAS  Google Scholar 

  47. J. Zong, Y. Zhu, X. Yang, C. Li, J. Alloy Compd. 509, 2970–2975 (2011)

    Article  CAS  Google Scholar 

  48. E. Cattaruzza, G. Battaglin, P. Canton, C. Sada, J Non Cryst. Solid 351, 1932–1936 (2005)

    Article  CAS  Google Scholar 

  49. R. Jean, K.-Ch. Chiu, T.-H. Chen, Ch.-H. Chen, D.-M. Liu, J. Phys. Chem. C 114, 15633–15639 (2010)

    Article  CAS  Google Scholar 

  50. J.A. Jimenez, M. Sendova, T. Hartsfield, M. Sendova-Vassileva, Mater. Res. Bull. 46, 158–165 (2011)

    Article  CAS  Google Scholar 

  51. Z. Wang, X. Chen, M. Chen, L. Wu, Langmuir 25, 7646–7651 (2009)

    Article  CAS  Google Scholar 

  52. X. Wang, H.-F. Wu, Q. Kuang, R.-B. Huang, Z.-X. Xie, L.-X. Zheng, Langmuir 26, 2774–2778 (2010)

    Article  CAS  Google Scholar 

  53. B.J. Murray, Q. Li, T. Newberg, E.J. Menke, J.C. Hemminger, R.M. Penner, Nano Lett. 5, 2319–2324 (2005)

    Article  CAS  Google Scholar 

  54. Z. Yang, R. Bao, D.B. Chrisey, Langmuir 27, 851–855 (2011)

    Article  Google Scholar 

  55. L.-M. Lyu, W.-C. Wang, M.H. Huang, Chem. Eur. J. 16, 14167–14174 (2010)

    Article  CAS  Google Scholar 

  56. Y. Zhang, Y. Li, G. Li, H. Huang, H.L.W. Chan, W.A. Daoud, J.H. Xin, L. Li, Chem Mater 19, 1939–1945 (2007)

    Article  CAS  Google Scholar 

  57. T.A. Crowley, K.J. Ziegler, M. Lyons, D. Erts, H. Olin, M.A. Morris, J.D. Holmes, Chem. Mater. 15, 3518–3522 (2003)

    Article  CAS  Google Scholar 

  58. X. Ji, Q. Hu, J.E. Hampsey, H. Qiu, L. Gao, J. He, Y. Lu, Chem. Mater. 18, 2265–2274 (2006)

    Article  CAS  Google Scholar 

  59. S. Dire, G. Facchin, F.R. Ceccato, L. Guarino, A. Sassi, M. Gleria, J. Inorg. Organomet. Polym. 12, 59–77 (2002)

    Google Scholar 

  60. X.Y.Q. Zhu, Y.Z. Jin, H.W. Kroto, D.R.M. Walton, J. Chem. Mater. 14, 685–689 (2004)

    Article  CAS  Google Scholar 

  61. Y. Jung, D.K. Ko, R. Agarwal, Nano Lett. 7, 264–268 (2007)

    Article  CAS  Google Scholar 

  62. B.L. Cushing, V.L. Kolesnischenko, Ch. Connors, Chem. Rev. 104, 3893–3946 (2004)

    Article  CAS  Google Scholar 

  63. Z. Li, B. Hou, Y. Xu, D. Wu, Y. Sun, W. Hu, F. Deng, J. Solid State Chem. 178, 1395–1405 (2005)

    Article  CAS  Google Scholar 

  64. K.A. Dick, K. Deppert, M.W. Larson, T. Martensson, W. Seifert, L.R. Wallenberg, L. Samuelson, Nature 3, 380–384 (2004)

    Article  CAS  Google Scholar 

  65. S.L. Yang, R.S. Gao, P.L. Niu, Z.Y. Zou, R.H. Yu, Nanoscale Res. Lett. 6, 1–6 (2001)

    Google Scholar 

  66. Y. Jiang, B. Xie, J. Wu, J. Solid State, Chemistry 167, 28–33 (2002)

    CAS  Google Scholar 

  67. J.H. Zhan, X.G. Yang, D.W. Wang, Adv. Mater. 12, 1315–1348 (2000)

    Article  Google Scholar 

  68. W.Z. Zhan, Y. Geng, P. Yan, J. Am. Chem. Soc. 121, 4062–4063 (1999)

    Article  Google Scholar 

  69. P. Yan, Y. Xie Y.T. Quian, Chem. Comm 1, 293–1294 (1999)

    Google Scholar 

  70. C. O’Dwyer, D. Navas, V. Lavayen, E.R. Benavente, M.A. Santa Ana, G. Gonzalez, S.B. Newcomb, C.M. Sotomayor, Chem. Mater. 18, 3016–3022 (2006)

    Google Scholar 

  71. L.-P. Zhu, H.M. Xiao, X.M. Liu, S.Y. Fu, J. Chem. Mater. 16, 1794–1797 (2006)

    Google Scholar 

  72. C. Sanchez, L. Rozas, F. Ribot, C. Laberty-Robert, D. Grosso, C. Gassoye, C. Boussiere, L. Niole, R. Chimie 12, 3–39 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from Fondecyt (Project 1085011) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luisa Valenzuela.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1553 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, C., Valenzuela, M.L., Carrillo, D. et al. The Inclusion of Organometallic Derivatives of Cyclotriphosphazenes Inside SiO2 Matrix and Their Conversion to Nanostructured Metal-Oxides and Phosphates. J Inorg Organomet Polym 22, 1101–1112 (2012). https://doi.org/10.1007/s10904-012-9692-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-012-9692-x

Keywords

Navigation