Skip to main content
Log in

Gold Nanoparticles Inducing Osteogenic Differentiation of Stem Cells: A Review

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) have been extensively studied for applications in biomedical sciences. AuNPs have exceptional advantages in cells studies include good biocompatibility and very low cytotoxicity. The eco-friendly synthesis of AuNPs with various physical characteristics is simple, and led to the fabrication of nanomaterials showing different biological functions routing cellular physiology. A growing number of recent studies focused on the promoting effect of AuNPs on stem cells osteogenic differentiation. This includes the ability of the AuNP to activate Wnt/β-catenin pathway, ERK/MAPK pathway and p38 MAPK pathway, resulting in the activation of the transcription factors for the osteogenic differentiation. This technology represents a promising therapeutic strategy to heal patients with bone injury, by regenerating bone cells using stem cells therapy. In this review, recent applications of AuNPs in stem cells osteogenic differentiation, along with the related inducing mechanism are discussed. We also provide recent updates on the AuNP synthesis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Li, J. En, J. Li, J. Zhang, X. Wang, N. Kawazoe, and G. Chen (2016). Gold Nanoparticle Size and Shape Influence on Osteogenesis of Mesenchymal Stem Cells. Nanoscale 8, (15), 7992–8007.

    Article  CAS  Google Scholar 

  2. A. Alkilany, S. Lohse, and C. Murphy (2012). The Gold Standard: Gold Nanoparticle Libraries to Understand the Nano–bio Interface. Acc. Chem. Res. 46, (3), 650–661.

    Article  Google Scholar 

  3. L. Ricles, S. Nam, and E. Trevino (2014). A Dual Gold Nanoparticle System for Mesenchymal Stem Cell Tracking. J. Mater. Chem. 2, (46), 8220–8230.

    Article  CAS  Google Scholar 

  4. Y. S. Zhang, Y. Wang, L. Wang, Y. Wang, X. Cai, C. Zhang, L. V. Wang, and Y. Xia (2013). Labeling Human Mesenchymal Stem Cells with Gold Nanocages for in Vitro and in Vivo Tracking by Two-Photon Microscopy and Photoacoustic Microscopy. Theranostics 3, (8), 532–543.

    Article  Google Scholar 

  5. W. Ko, D. Heo, H. Moon, S. Lee, and M. Bae (2015). The Effect of Gold Nanoparticle Size on Osteogenic Differentiation of Adipose-Derived Stem Cells. J. Colloid Interface Sci. 438, 68–76.

    Article  CAS  Google Scholar 

  6. A. Higuchi, S.H. Kao, Q.D. Ling, Y.M. Chen, H.F. Li, A.A. Alarfaj, M.A. Munusamy, K. Murugan, S.C. Chang, H.C. Lee, S.T. Hsu, S. Suresh Kumar, and A. Umezawa (2015). Long-Term Xeno-Free Culture of Human Pluripotent Stem Cells on Hydrogels with Optimal Elasticity. Scientific Reports, 5, 18136.  

    Article  CAS  Google Scholar 

  7. I. Peng, C. Yeh, Y. Lu, S. Muduli, Q. Ling, and A. Alarfaj (2016). Continuous Harvest of Stem Cells via Partial Detachment from Thermoresponsive Nanobrush Surfaces. Biomaterials 76, 76–86.

    Article  CAS  Google Scholar 

  8. K. Russell, D. Phinney, M. Lacey, and B. Barrilleaux (2010). In Vitro High-capacity Assay to Quantify the Clonal Heterogeneity in Trilineage Potential of Mesenchymal Stem Cells Reveals a Complex Hierarchy of Lineage. Stem Cells 28, (4), 788–798.

    Article  CAS  Google Scholar 

  9. A. Higuchi, S. Kumar, Q. Ling, and A. Alarfaj (2017). Polymeric Design of Cell Culture Materials That Guide the Differentiation of Human Pluripotent Stem Cells. Prog. Polym. Sci. 65, 83–126.

    Article  CAS  Google Scholar 

  10. D. Chen, L. Chen, Q. Ling, M. Wu, and C. Wang (2014). Purification of Human Adipose-Derived Stem Cells from Fat Tissues Using PLGA/silk Screen Hybrid Membranes. Biomaterials 35, (14), 4278–4287.

    Article  CAS  Google Scholar 

  11. C. Yi, D. Liu, C.-C. C. Fong, J. Zhang, and M. Yang (2010). Gold Nanoparticles Promote Osteogenic Differentiation of Mesenchymal Stem Cells through p38 MAPK Pathway. ACS Nano 4, (11), 6439–6448.

    Article  CAS  Google Scholar 

  12. T. Pan, W. Song, H. Gao, T. Li, X. Cao, S. Zhong, and Y. Wang (2016). MiR-29b-Loaded Gold Nanoparticles Targeting to the Endoplasmic Reticulum for Synergistic Promotion of Osteogenic Differentiation. ACS Appl. Mater. Interfaces. 8, (30), 19217–19227.

    Article  CAS  Google Scholar 

  13. S. S. Y. Choi, M. M. S. Song, P. P. D. Ryu, A. A. T. N. Lam, S.-W. Joo, and S. Y. Lee (2015). Gold Nanoparticles Promote Osteogenic Differentiation in Human Adipose-Derived Mesenchymal Stem Cells through the Wnt/β-Catenin Signaling Pathway. Int. J. Nanomed. 10, 4383.

    CAS  Google Scholar 

  14. D. Zhang, D. Liu, J. Zhang, C. Fong, and M. Yang (2014). Gold Nanoparticles Stimulate Differentiation and Mineralization of Primary Osteoblasts through the ERK/MAPK Signaling Pathway. Mater. Sci. Eng., C 42, 70–77.

    Article  Google Scholar 

  15. C. Bennett, K. Longo, and W. Wright (2005). Regulation of Osteoblastogenesis and Bone Mass by Wnt10b. Proc. Natl. Acad. Sci. U.S.A. 102, (9), 3324–3329.

    Article  CAS  Google Scholar 

  16. R. M. Salasznyk, R. F. Klees, M. K. Hughlock, and G. E. Plopper (2004). ERK Signaling Pathways Regulate the Osteogenic Differentiation of Human Mesenchymal Stem Cells on Collagen I and Vitronectin. Cell Commun. Adhes. 11, (5–6), 137–153.

    Article  CAS  Google Scholar 

  17. J. J. Li, N. Kawazoe, and G. Chen (2015). Gold Nanoparticles with Different Charge and Moiety Induce Differential Cell Response on Mesenchymal Stem Cell Osteogenesis. Biomaterials 54, 226–236.

    Article  CAS  Google Scholar 

  18. X. Ji, X. Song, J. Li, Y. Bai, and W. Yang (2007). Size Control of Gold Nanocrystals in Citrate Reduction: The Third Role of Citrate. J. Am. Chem. Soc. 129, (45), 13939–13948.

    Article  CAS  Google Scholar 

  19. A. Madu, P. Njoku, and G. Iwuoha (2011). Synthesis and Characterization of Gold Nanoparticles Using 1-Alkyl, 3-Methyl Imidazolium Based Ionic Liquids. Int. J. Phys. Sci. 6, (4), 635–640.

    CAS  Google Scholar 

  20. K. Mallick, Z. Wang, and T. Pal (2001). Seed-Mediated Successive Growth of Gold Particles Accomplished by UV Irradiation: A Photochemical Approach for Size-Controlled Synthesis. J. Photochem. Photobiol. A. 140, (1), 75–80.

    Article  CAS  Google Scholar 

  21. K. Okitsu, Y. Mizukoshi, T. Yamamoto, and Y. Maeda (2007). Sonochemical Synthesis of Gold Nanoparticles on Chitosan. Mater. Lett. 61, (16), 3429–3431.

    Article  CAS  Google Scholar 

  22. J. Turkevich, P. Stevenson, and J. Hillier (1951). A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 11, 55–75.

    Article  Google Scholar 

  23. M. Wuithschick, A. Birnbaum, S. Witte, and M. Sztucki (2015). Turkevich in New Robes: Key Questions Answered for the Most Common Gold Nanoparticle Synthesis. ACS Nano 9, (7), 7052–7071.

    Article  CAS  Google Scholar 

  24. J. Li, R. Cai, N. Kawazoe, and G. Chen (2015). Facile Preparation of Albumin-Stabilized Gold Nanostars for the Targeted Photothermal Ablation of Cancer Cells. J. Mater. Chem. B 3, (28), 5806–5814.

    Article  CAS  Google Scholar 

  25. Y. Xiang, X. Wu, D. Liu, L. Feng, and K. Zhang (2008). Tuning the Morphology of Gold Nanocrystals by Switching the Growth of 110 Facets from Restriction to Preference. J. Phys. Chem. 112, (9), 3203–3208.

    CAS  Google Scholar 

  26. S. Eustis and M. El-Sayed (2006). Why Gold Nanoparticles Are More Precious than Pretty Gold: Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties. Chem. Soc. Rev. 35, (3), 209–217.

    Article  CAS  Google Scholar 

  27. Y. Li, L. Feng, X. Shi, X. Wang, Y. Yang, K. Yang, T. Liu, G. Yang, and Z. Liu (2014). Surface Coating-Dependent Cytotoxicity and Degradation of Graphene Derivatives: Towards the Design of Non-Toxic, Degradable Nano-Graphene. Small 10, (8), 1544–1554.

    Article  CAS  Google Scholar 

  28. L. Qi, Y. Guo, J. Luan, D. Zhang, and Z. Zhao (2014). Folate-Modified Bexarotene-Loaded Bovine Serum Albumin Nanoparticles as a Promising Tumor-Targeting Delivery System. J. Mater. Chem. B 2, (47), 8361–8371.

    Article  CAS  Google Scholar 

  29. P. Quaresma, L. Soares, L. Contar, and A. Miranda (2009). Green Photocatalytic Synthesis of Stable Au and Ag Nanoparticles. Green Chem. 11, (11), 1889–1893.

    Article  CAS  Google Scholar 

  30. P. Kuppusamy, S. Ichwan, and N. Parine (2015). Intracellular Biosynthesis of Au and Ag Nanoparticles Using Ethanolic Extract of Brassica Oleracea L. and Studies on Their Physicochemical and Biological Properties. J. Environ. Sci. 29, 151–157.

    Article  Google Scholar 

  31. V. Gopinath, S. Priyadarshini, D. MubarakAli, M.F. Loke, N. Thajuddin, N.S. Alharbi, T. Yadavalli, and M. V. J. Alagiri (2016). Anti-Helicobacter Pylori, Cytotoxicity and Catalytic Activity of Biosynthesized Gold Nanoparticles: Multifaceted Application. Arab. J. Chem. https://doi.org/10.1016/j.arabjc.2016.02.005.

    Google Scholar 

  32. M. Ateeq, M. Shah, N. ul Ain, S. Bano, and I. Anis (2015). Green Synthesis and Molecular Recognition Ability of Patuletin Coated Gold Nanoparticles. Biosens. Bioelectron. 63, 499–505.

    Article  CAS  Google Scholar 

  33. J. Subramaniam, K. Murugan, and C. Panneerselvam (2016). Multipurpose Effectiveness of Couroupita guianensis-Synthesized Gold Nanoparticles: High Antiplasmodial Potential, Field Efficacy against Malaria Vectors and Synergy. Environ. Sci. Pollut. Res. 23, (8), 7543–7558.

    Article  CAS  Google Scholar 

  34. K. Tahir, S. Nazir, B. Li, A. Khan, Z. Khan, and P. Gong (2015). Nerium oleander Leaves Extract Mediated Synthesis of Gold Nanoparticles and Its Antioxidant Activity. Mater. Lett. 156, 198–201.

    Article  CAS  Google Scholar 

  35. B. Paul, B. Bhuyan, D. Purkayastha, M. Dey, and S. Dhar (2015). Green Synthesis of Gold Nanoparticles Using Pogestemon benghalensis (B) O. Ktz. Leaf Extract and Studies of Their Photocatalytic Activity in Degradation of Methylene. Mater. Lett. 148, 37–40.

    Article  CAS  Google Scholar 

  36. K. Murugan, G. Benelli, and C. Panneerselvam (2015). Cymbopogon citratus-Synthesized Gold Nanoparticles Boost the Predation Efficiency of Copepod Mesocyclops Aspericornis against Malaria and Dengue Mosquitoes. Exp. Parasitol. 153, 129–138.

    Article  CAS  Google Scholar 

  37. N. Sharma, A. Pinnaka, and M. Raje (2012). Exploitation of Marine Bacteria for Production of Gold Nanoparticles. Microb. cell 11, (1), 86.

    Article  CAS  Google Scholar 

  38. S. Rajasree and T. Suman (2012). Extracellular Biosynthesis of Gold Nanoparticles Using a Gram Negative Bacterium Pseudomonas fluorescens. Asian Pac. J. Trop. Dis. 2, S796–S799.

    Article  Google Scholar 

  39. M. Agnihotri, S. Joshi, A. R. Kumar, and S. K. Zinjarde (2009). Biosynthesis of Gold Nanoparticles by the Tropical. Mater. Lett. 63, (15), 1231–1234.

    Article  CAS  Google Scholar 

  40. P. Manivasagan, J. Venkatesan, and K. Kang (2015). Production of α-Amylase for the Biosynthesis of Gold Nanoparticles Using Streptomyces Sp. MBRC-82. Int. J. Biol. Macromol. 72, 71–78.

    Article  CAS  Google Scholar 

  41. R. Bhambure, M. Bule, and N. Shaligram (2009). Extracellular Biosynthesis of Gold Nanoparticles Using Aspergillus niger—its Characterization and Stability. Chem. Eng. Technol. 32, (7), 1036–1041.

    Article  CAS  Google Scholar 

  42. J. Kimling, M. Maier, B. Okenve, and V. Kotaidis (2006). Turkevich Method for Gold Nanoparticle Synthesis Revisited. J. Phys. Chem. 110, (32), 15700–15707.

    Article  CAS  Google Scholar 

  43. S. Mathews, P. Gupta, R. Bhonde, and S. Totey (2011). Chitosan Enhances Mineralization during Osteoblast Differentiation of Human Bone Marrow-derived Mesenchymal Stem Cells, by Upregulating the Associated Genes. Cell Prolif. 44, (6), 537–549.

    Article  CAS  Google Scholar 

  44. R. Muzzarelli (2011). Chitosan Composites with Inorganics, Morphogenetic Proteins and Stem Cells, for Bone Regeneration. Carbohydr. Polym. 83, (4), 1433–1445.

    Article  CAS  Google Scholar 

  45. J. Deng, H. Zheng, X. Zheng, M. Yao, Z. Li, and C. Gao (2016). Gold Nanoparticles with Surface-Anchored Chiral Poly (Acryloyl-l(d)-Valine) Induce Differential Response on Mesenchymal Stem Cell Osteogenesis. Nano Res. 9, (12), 3683–3694.

    Article  CAS  Google Scholar 

  46. D. Zhang, D. Liu, J. Zhang, C. Fong, and M. Yang (2014). Gold Nanoparticles Stimulate Differentiation and Mineralization of Primary Osteoblasts through the ERK/MAPK Signaling Pathway. Mater. Sci. Eng. 42, 70–77.

    Article  Google Scholar 

  47. R. Fodde and T. Brabletz (2007). Wnt/β-Catenin Signaling in Cancer Stemness and Malignant Behavior. Curr. Opin. Cell Biol. 19, (2), 150–158.

    Article  CAS  Google Scholar 

  48. Z. Li, W. Liao, Q. Zhao, T. Huan, and P. Feng (2014). Effect of Cbfa1 on Osteogenic Differentiation of Mesenchymal Stem Cells under Hypoxia Condition. Int. J. Clin. Exp. Med. 7, (3), 540.

    CAS  Google Scholar 

  49. B. M. Strem, K. C. Hicok, M. Zhu, I. Wulur, Z. Alfonso, R. E. Schreiber, and J. K. Fraser (2005). H. M. Multipotential Differentiation of Adipose Tissue-Derived Stem Cells. J. Med. 54, (3), 132–141.

    CAS  Google Scholar 

  50. T. Matsushita and S. Murakami The ERK MAPK Pathway in Bone and Cartilage Formation (In Protein Kinases, InTech, 2012).

    Book  Google Scholar 

  51. M. Cargnello and P. Roux (2011). Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiol. Mol. Biol. 75, (1), 50–83.

    Article  CAS  Google Scholar 

  52. W. Zhang and H. Liu (2002). MAPK Signal Pathways in the Regulation of Cell Proliferation in Mammalian Cells. Cell Res. 12, (1), 9.

    Article  CAS  Google Scholar 

  53. J. McCain (2013). The MAPK (ERK) Pathway: Investigational Combinations for the Treatment of BRAF-Mutated Metastatic Melanoma. Pharm. Ther. 38, (2), 96.

    Google Scholar 

  54. P. Shapiro (1998). Activation of the MKK/ERK Pathway during Somatic Cell Mitosis: Direct Interactions of Active ERK with Kinetochores and Regulation of the Mitotic 3F3/2 Phosphoantigen. J. Cell Biol. 142, (6), 1533–1545.

    Article  CAS  Google Scholar 

  55. P. Ducy, R. Zhang, V. Geoffroy, A. L. Ridall, and G. Karsenty (1997). Osf2/Cbfa1: A Transcriptional Activator of Osteoblast Differentiation. Cell 89, (5), 747–754.

    Article  CAS  Google Scholar 

  56. C. Ge, G. Xiao, D. Jiang, and R. T. Franceschi (2007). Critical Role of the Extracellular Signal–regulated kinase–MAPK Pathway in Osteoblast Differentiation and Skeletal Development. J. Cell Biol. 176, (5), 709–718.

    Article  CAS  Google Scholar 

  57. A. Verma and F. Stellacci (2010). Effect of Surface Properties on Nanoparticle–Cell Interactions. Small 6, (1), 12–21.

    Article  CAS  Google Scholar 

  58. J. F. Hillyer and R. M. Albrecht (2017). Gastrointestinal Persorption and Tissue Distribution of Differently Sized Colloidal Gold Nanoparticles. J. Pharm. Sci. 90, (12), 1927–1936.

    Article  Google Scholar 

  59. S. Katz, R. Boland, and G. Santillan (2006). Modulation of ERK 1/2 and p38 MAPK Signaling Pathways by ATP in Osteoblasts: Involvement of Mechanical Stress-Activated Calcium Influx, PKC and Src Activation. Int. J. Biochem. 38, (12), 2082–2091.

    Article  CAS  Google Scholar 

  60. G.-Y. Jung, Y.-J. Park, and J.-S. Han (2011). Mediation of Rac1 Activation by Kindlin-2: An Essential Function in Osteoblast Adhesion, Spreading, and Proliferation. J. Cell. Biochem. 112, (9), 2541–2548.

    Article  CAS  Google Scholar 

  61. X. Li, N. Udagawa, K. Itoh, K. Suda, Y. Murase, T. Nishihara, and T. Suda (2002). T. N. p38 MAPK-Mediated Signals Are Required for Inducing Osteoclast Differentiation but Not for Osteoclast Function. Endocrinology 143, (8), 3105–3113.

    Article  CAS  Google Scholar 

  62. T. Zarubin and J. Han (2005). Activation and Signaling of the p38 MAP Kinase Pathway. Cell Res. 15, (1), 11.

    Article  CAS  Google Scholar 

  63. G. Benelli and C. Lukehart (2017). Special Issue: Applications of Green-Synthesized Nanoparticles in Pharmacology, Parasitology and Entomology. J. Clust. Sci. 28, (1), 1–2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suresh Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Z., Wang, K., Zhang, W. et al. Gold Nanoparticles Inducing Osteogenic Differentiation of Stem Cells: A Review. J Clust Sci 29, 1–7 (2018). https://doi.org/10.1007/s10876-017-1311-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1311-0

Keywords

Navigation