Skip to main content
Log in

Strategic Green Synthesis, Characterization and Catalytic Application to 4-Nitrophenol Reduction of Palladium Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We present a study on the catalytic reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride in the presence of palladium nanoparticles (PdNPs) using the seed extract of milk thistle (Silibum marianum). Ultra violet-visible (UV–Vis) absorption spectroscopy, X-ray diffraction pattern and transmission electron microscopic analyses were respectively used to characterize and confirm the formation, crystalline nature and morphology of the as-synthesized PdNPs. The particles are spherical, crystalline and the size range is <20 nm. The identification of the possible bio-molecules responsible for the reeducation and stabilization of PdNPs was characterized through Fourier transform infrared spectroscopy. The effectiveness of as-synthesized PdNPs catalyst has been evaluated, on the well-known 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and it was monitored using UV–Vis absorbance spectroscopy. The reduction was very efficient and the as-synthesized homogeneous liquid-phase catalyst is eco-friendly, very efficient, easy to synthesize, stable, cost effective and have the potential for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Kim, K. L. Kim, and K. S. Shin (2011). J. Phys. Chem. C 115, 14844–14851.

    Article  CAS  Google Scholar 

  2. H. U. Blaser, A. Indolese, A. Schnyder, H. Steiner, and M. Studer (2001). J. Mol. Catal. A: Chem. 173, 3–18.

    Article  CAS  Google Scholar 

  3. G. C. Fortman and S. P. Nolan (2011). Chem. Soc. Rev. 40, 5151.

    Article  CAS  Google Scholar 

  4. R. Narayanan and M. A. El-Sayed (2005). J. Phys. Chem. B 10, 4357.

    Article  Google Scholar 

  5. B. Loganathan and B. Karthikeyan (2013). Colloids Surf. A Physicochem. Eng. Asp. 436, 944–952.

    Article  CAS  Google Scholar 

  6. M. Nasrollahzadeh, S. M. Sajadi, and M. Maham (2015). J. Mol. Catal. A: Chem. 396, 297–303.

    Article  CAS  Google Scholar 

  7. D. S. Sheny, D. Philip, and J. Mathew (2012). Spectrochim. Acta A 91, 35–38.

    Article  CAS  Google Scholar 

  8. K. Flora, M. Hahn, H. Rosen, and K. Benner (1998). Am. J. Gastroenterol. 93, 139–143.

    Article  CAS  Google Scholar 

  9. R. Gopalakrishnan and K. Raghu (2014). J. Nanosci. doi:10.1155/2014/905404.

    Google Scholar 

  10. R. Gopalakrishnan, B. Loganathan, and K. Raghu (2015). RSC Adv. 5, 31691–31699.

    Article  CAS  Google Scholar 

  11. J. Ye, A. Singh, and O. Ward (2004). World J. Microbiol. Biotechnol. 20, 117–135.

    Article  CAS  Google Scholar 

  12. S. Zhao, H. Ma, M. Wang, C. Cao, J. Xiong, Y. Xu, and S. Yao (2010). Photochem. Photobiol. Sci. 9, 710–715.

    Article  CAS  Google Scholar 

  13. S. Sandip, P. Anjali, K. Subrata, B. Soumen, and P. Tarasankar (2010). Langmuir 26, 2885–2893.

    Article  Google Scholar 

  14. B. Loganathan, V. L. Chandraboss, S. Senthilvelan, and B. Karthikeyan (2015). Phys. Chem. Chem. Phys. 17, 21268–21277.

    Article  CAS  Google Scholar 

  15. B. Loganathan, V. L. Chandraboss, S. Senthilvelan, and B. Karthikeyan (2016). Physica E 75, 223–234.

    Article  CAS  Google Scholar 

  16. B. Loganathan, V. L. Chandraboss, M. Murugavelu, S. Senthilvelan, and B. Karthikeyan (2015). J. Sol-Gel. Sci. Technol. 74, 1–14.

    Article  CAS  Google Scholar 

  17. R. Mathammal, N. Sudha, L. Guru Prasad, N. Ganga, and V. Krishnakumar (2015). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 137, 740–748.

    Article  CAS  Google Scholar 

  18. L. Guru Prasad, V. Krishnakumar, and R. Nagalakshmi (2013). Spectrochim. Acta A Mol. Biomol. Spectrosc. 110, 377–382.

    Article  CAS  Google Scholar 

  19. J. Liu, G. Qin, P. Raveendran, and Y. Ikushima (2006). Chem. Eur. J. 12, 2131–2138.

    Article  CAS  Google Scholar 

  20. S. Wunder, F. Polzer, L. Yan, Yu Mei, and M. Ballauff (2010). J. Phys. Chem. C 114, 8814–8820.

    Article  CAS  Google Scholar 

  21. C. Chu and S. Zhaohui (2014). Langmuir 30, 15345–15350.

    Article  CAS  Google Scholar 

  22. Y. S. Seo, E.-Y. Ahn, J. Park, T. Y. Kim, J. E. Hong, K. Kim, Y. Park, and Y. Park (2017). Nanoscale Res. Lett. 12, 1–11.

    Article  CAS  Google Scholar 

  23. C. Castaneda, F. Tzompantzi, and R. Gomez (2016). J. Sol-Gel. Sci. Technol. 80, (2), 426–435.

    Article  CAS  Google Scholar 

  24. S. J. Mane Gavade, G. H. Nikam, S. R. Sabale, and B. V. Tamhankar (2016). Mater. Today Proc. 3, 4109–4114.

    Article  Google Scholar 

  25. J. Safari, A. E. Najafabadi, Z. Zarnegar, and S. F. Masoule (2016). Green Chem. Lett. Rev. 9, 20–26.

    Article  CAS  Google Scholar 

  26. S. Mehmood, N. K. Janjua, F. Saira, and H. Fenniri (2016). J. Spectrosc. doi:10.1155/2016/6210794.

    Google Scholar 

  27. K. Kuroda, T. Ishida, and M. Haruta (2009). J. Mol. Catal. A: Chem. 298, 7–11.

    Article  CAS  Google Scholar 

  28. P. Zhang, R. Li, Y. Huang, and Q. Chen (2014). ACS Appl. Mater. Interfaces. 6, 2671–2678.

    Article  CAS  Google Scholar 

  29. J. A. Adekoya, E. O. Dare, M. A. Mesubi, A. A. Nejo, H. C. Swart, and N. Revaprasadu (2014). Results Phys. 4, 12–19.

    Article  Google Scholar 

  30. J.-G. Wang, X. Hua, M. Li, and Y.-T. Long (2016). ACS Appl. Mater. Interfaces. 9, (3), 3016–3023.

    Article  Google Scholar 

  31. G. Liao, J. Chen, W. Zeng, Yu Chunhan, C. Yi, and X. Zushun (2016). J. Phys. Chem. C 120, (45), 25935–25944.

    Article  CAS  Google Scholar 

  32. C. Kastner and A. F. Thunemann (2016). Langmuir 32, (29), 7383–7391.

    Article  Google Scholar 

  33. F. Xia, X. Xiaoyang, X. Li, L. Zhang, L. Zhang, Yu Wei Wang, and J. G. Liu (2014). Ind. Eng. Chem. Res. 53, (26), 10576–10582.

    Article  CAS  Google Scholar 

  34. S. Chairam, W. Konkamdee, and R. Parakhun (2015). J. Saudi Chem. Soc. doi:10.1016/j.jscs.2015.11.001.

    Google Scholar 

  35. A. Fedorczyk, J. Ratajczak, O. Kuzmych, and M. Skompska (2015). J. Solid State Electrochem. 19, (9), 2849–2858.

    Article  CAS  Google Scholar 

  36. C. H. Prasad, K. Srinivasulu, and P. Venkateswarlu (2015). Ind. Chem. 1, 1–4.

    Article  Google Scholar 

  37. H. Saikia, B. J. Borah, Y. Yamada, and P. Bharali (2017). J. Colloid Interface Sci. 486, 46–57.

    Article  CAS  Google Scholar 

  38. A. Guarnizo, I. Angurell, G. Muller, J. Llorca, M. Seco, O. Rossell, and M. D. Rossell (2016). RSC Adv. 6, 68675–68684.

    Article  CAS  Google Scholar 

  39. N. Bingwa and R. Meijboom (2014). J. Phys. Chem. C 118, 19849–19858.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Dr. S. Barathan (Professor, Department of Physics and Dean, Faculty of Science, Annamalai University) for his motivations and suggestions throughout this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Raghu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalakrishnan, R., Loganathan, B., Dinesh, S. et al. Strategic Green Synthesis, Characterization and Catalytic Application to 4-Nitrophenol Reduction of Palladium Nanoparticles. J Clust Sci 28, 2123–2131 (2017). https://doi.org/10.1007/s10876-017-1207-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1207-z

Keywords

Navigation