Skip to main content
Log in

Two New Borates Made of [B5O6(OH)4] and [B5O10(OH)]6− Clusters, Accompanying a Novel In Situ Organic Reaction

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two new pentaborate clusters, [MPD][B5O6(OH)4] (1, MPD = 2-methyl-1,4,5,6-tetrahydropyrimidine-3-ium) and SrB5O8(OH) H2O (2), have been hydro(solvo)thermally synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction and single-crystal X-ray structural analysis, respectively. Crystal data for 1: monoclinic, P21/c, a = 9.3384(3) Å, b = 17.3774(5) Å, c = 9.1886(3) Å, β = 93.172(3)°, Z = 4. Crystal data for 2: triclinic, P-1, a = 6.6406(6) Å, b = 6.6784(8) Å, c = 10.2162(15) Å, α = 98.905(11)°, β = 92.237(9)°, γ = 119.446(11)°, Z = 2. In compound 1, all the terminal O atoms of [B5O6(OH)4] clusters are hydroxyl groups, which hinder the further connection of the [B5O6(OH)4] clusters, only forming 3-D supramolecular frameworks via extensive hydrogen-bonding interactions. In compound 2, the [B5O10(OH)]6− clusters link each other to form a 2-D layer, which are further extended to 3-D supramolecular frameworks via extensive hydrogen-bonding interactions. Interestingly, a novel in situ organic reaction between 1,3-diaminoprapane and CH3COO group has been observed during the formation of compound 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu (1995). Nature 373, 322.

    Article  CAS  Google Scholar 

  2. P. C. Burns, J. D. Grice, and F. C. Hawthorne (1995). Can. Mineral. 33, 1131.

    CAS  Google Scholar 

  3. C. L. Christ and J. R. Clark (1977). Phys. Chem. Miner. 2, 59.

    Article  CAS  Google Scholar 

  4. P. Becker (1998). Adv. Mater. 10, 979.

    Article  CAS  Google Scholar 

  5. D. F. Xue, K. Betzler, and H. Hesse (2002). Appl. Phys. A 74, 7792.

    Article  Google Scholar 

  6. G. Heller (1986). Top. Curr. Chem. 131, 39.

    Article  CAS  Google Scholar 

  7. C. T. Chen, S. Y. Luo, X. Y. Wang, G. L. Wang, X. H. Wen, H. X. Wu, X. Zhang, and Z. Y. Xu (2009). J. Opt. Soc. Am. B 26, 1519.

    Article  CAS  Google Scholar 

  8. Z. Y. Wu, P. Brandao, and Z. Lin (2012). Inorg. Chem. 51, 3088.

    Article  CAS  Google Scholar 

  9. C. Heyward, C. McMillen, and J. Kolis (2012). Inorg. Chem. 51, 3956.

    Article  CAS  Google Scholar 

  10. H. Wu, H. Yu, Z. Yang, X. Hou, X. Su, S. Pan, K. R. Poeppelmeier, and J. M. Rondinelli (2013). J. Am. Chem. Soc. 135, 4215.

    Article  CAS  Google Scholar 

  11. G. M. Wang, Y. Q. Sun, and G. Y. Yang (2004). J. Solid State Chem. 184, 4648.

    Article  Google Scholar 

  12. C. Chen, B. Wu, A. Jiang, and G. You (1985). Sci. Sin. Ser. B 28, 235.

    Google Scholar 

  13. C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and S. Lin (1989). J. Opt. Soc. Am. B 6, 616.

    Article  CAS  Google Scholar 

  14. Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai (1995). Appl. Phys. Lett. 67, 1818.

    Article  CAS  Google Scholar 

  15. Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang, and C. Chen (1993). Appl. Phys. Lett. 62, 2614.

    Article  CAS  Google Scholar 

  16. Z. H. Liu and L. Q. Li (2006). Cryst. Growth Des. 6, 1247.

    Article  CAS  Google Scholar 

  17. M. S. Wang, G. C. Guo, W. T. Chen, G. Xu, W. W. Zhou, K. J. Wu, and J. S. Huang (2007). Angew. Chem. Int. Ed. 46, 3909.

    Article  CAS  Google Scholar 

  18. G. M. Wang, J. H. Li, H. L. Huang, H. Li, and J. Zhang (2008). Inorg. Chem. 47, 5039.

    Article  CAS  Google Scholar 

  19. M. C. Liu, P. Zhou, H. G. Yao, S. H. Ji, R. C. Zhang, M. Ji, and Y. L. An (2009). Eur. J. Inorg. Chem. 20, 4622.

    Article  Google Scholar 

  20. G. P. Richard (1988). Heterocycles 27, 1867.

    Article  Google Scholar 

  21. G. M. Sheldrick, SHELXS-2013, Program for Solution of Crystal Structure (University of Göttingen, Germany, 2013).

    Google Scholar 

  22. G. M. Sheldrick, SHELXS-2013, Program for Solution of Crystal Refinement (University of Göttingen, Germany, 2013).

    Google Scholar 

  23. M. Touboul, E. Bertourn, and L. Seguin (1996). Mater. Sci. Forum 228, 741.

    Article  Google Scholar 

  24. K. Timper, G. Heller, and M. Shakibaie-Moghadam (1990). Z. Naturforsch. B 45, 1155.

    Article  CAS  Google Scholar 

  25. W. H. Zachariasen and H. A. Plettinger (1963). Acta Crystallogr. 16, 376.

    Article  CAS  Google Scholar 

  26. H. Behm (1984). Acta Crystallogr. C 40, 1114.

    Article  Google Scholar 

  27. P. Becker, P. Held, and L. Bohaty (2000). Cryst. Res. Technol. 35, 1251.

    Article  CAS  Google Scholar 

  28. C. C. Freyhardt, M. Wiebcke, J. Felsche, and G. Engelhardt (1994). J. Incl. Phenom. Mol. Recognit. Chem. 18, 161.

    Article  CAS  Google Scholar 

  29. M. A. Beckett, S. J. Coles, R. A. Davies, P. N. Horton, and C. L. Jones (2015). Dalton Trans. 44, 7032.

    Article  CAS  Google Scholar 

  30. M. A. Beckett, P. N. Horton, M. B. Hursthouse, and J. L. Timmis (2014). Polyhedron 77, 96.

    Article  CAS  Google Scholar 

  31. D. M. Schubert, M. Z. Visi, and C. B. Knobler (2008). Inorg. Chem. 47, 2017.

    Article  CAS  Google Scholar 

  32. R. A. Baber, J. P. H. Charmant, N. C. Norman, A. G. Orpen, and J. Rossi (2004). Acta Cryst. E. E60, o1086.

    Article  Google Scholar 

  33. C. Hormillosa, S. Healy, T. Stephen, and I. D. Brown (1993) Bond Valence Calculator, Version 2.0. http://ccp14.sims.nrc.ca/ccp/web-mirrors/i_d_brown/. Accessed 25 Jan 2015.

  34. Y. Liu, H. He, B. F. Yang, and G. Y. Yang (2015). J. Clust. Sci. doi:10.1007/s10876-015-0845-2.

    Google Scholar 

  35. D. M. Schubert, M. Z. Visi, C. B. Knobler, J. J. Owen, and M. I. Khan (2006). Cryst. Growth Des. 6, 538.

    Article  Google Scholar 

  36. M. Wiebcke, C. C. Freyhardt, J. Felsche, and G. Engelhardt (1993). Z. Naturforsch. B 48, 978.

    Article  CAS  Google Scholar 

  37. M. A. Beckett, P. N. Horton, M. B. Hursthouse, D. A. Knoxa, and J. L. Timmis (2010). Dalton Trans. 39, 3944.

    Article  CAS  Google Scholar 

  38. C. E. Weir and R. Schroeder (1964). J. Res. Natl. Bur. Stand. Sect. A68, 465.

    Article  Google Scholar 

  39. J. Krogh-Moe (1965). Phys. Chem. Glasses 6, 46.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC (Nos. 21201017, 91122028 and 50872133), the NSFC of Distinguished Young Scholars (No. 20725101), and the 973 Program (No. 2014CB932101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Yu Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Pan, R., He, H. et al. Two New Borates Made of [B5O6(OH)4] and [B5O10(OH)]6− Clusters, Accompanying a Novel In Situ Organic Reaction. J Clust Sci 26, 2023–2032 (2015). https://doi.org/10.1007/s10876-015-0900-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0900-z

Keywords

Navigation