Skip to main content
Log in

Effect of Gallium Doping on Electronic and Structural Properties (6,0) Zigzag Silicon Carbide Nanotube as a p-Semiconductor

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations were performed to investigate the electronic and structural properties of pristine and Ga-doped (6,0) zigzag silicon carbide nanotubes (SiCNTs) as a p-semiconductor at the B3LYP/6-31G* level of theory in order to evaluate the influence of Ga doping on (6,0) zigzag SiCNTs. We extended the DFT calculation to predict the electronic structure properties of Ga-doped silicon carbide nanotubes, which are very important for production of solid-state devices and other applications. To this aim, pristine and Ga-doped SiCNT structures in two models (GaSi and GaC) were optimized and structural properties, the isotropic (CSI) and anisotropic (CSA) chemical shielding parameters for the sites of various 29Si and 13C atoms, and quantum molecular descriptors were calculated in the optimized structures. The optimized structures, NMR parameters, and the electronic energies for the GaSi and GaC of the (6,0) zigzag SiCNT models show that the GaSi model is a better p-semiconductor from GaC model in production of solid-state devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. F. Davis, J. W. Palmour, and J. A. Edmond (1992). Diamond Relat. Mater. 1, 109.

    Article  CAS  Google Scholar 

  2. N. E. Korsunska, I. Tarasov, V. Kushnirenko, and S. Ostapenko (2004). Semicon. Sci. Technol. 19, 833.

    Article  CAS  Google Scholar 

  3. X.-H. Sun, C.-P. Li, W.-K. Wong, N.-B. Wong, C.-S. Lee, S.-T. Lee, and B.-T. Teo (2002). J. Am. Chem. Soc. 124, 14464.

    Article  CAS  Google Scholar 

  4. M. Zhao, Y. Xia, R. Q. Zhang, and S. T. Lee (2005). J. Chem. Phys. 122, 21470.

    Google Scholar 

  5. Y. Miyamoto and B. D. Yu (2002). Appl. Phys. Lett. 80, 586.

    Article  CAS  Google Scholar 

  6. K. M. Alam and A. K. Ray (2009). J. Nano Part. Res. 11, 1405.

    Article  CAS  Google Scholar 

  7. A. Wu, Q. Song, L. Yang, and Q. Hao (2011). Comput. Theor. Chem. doi:10.1016/j.comptc.2011.09.013.

  8. K. M. Alam and A. K. Ray (2007). Nanotechnology 18, 495706.

    Article  Google Scholar 

  9. I. J. Wu and G. Y. Guo (2007). Phys. Rev. B 76, 035343.

    Article  Google Scholar 

  10. S. Choudhary and S. Qureshi (2011). Phys. Lett. A 375, 3382.

    Article  CAS  Google Scholar 

  11. Y. T. Yang, R. X. Ding, and J. X. Song (2011). Phys. B 406, 216.

    Article  CAS  Google Scholar 

  12. A. Gali (2006). Phys. Rev. B 73, 245415.

    Article  Google Scholar 

  13. F. A. Bovey Nuclear Magnetic Resonance Spectroscopy (Academic Press, San Diego, 1988).

    Google Scholar 

  14. M. T. Baei, S. Z. Sayyed Alang, A. V. Moradi, and P. Torabi (2012). J. Mol. Model. 18, 881.

    Article  CAS  Google Scholar 

  15. M. T. Baei, A. V. Moradi, P. Torabi, and M. Moghimi (2011). Monatsh. Chem. 142, 783.

    Article  CAS  Google Scholar 

  16. M. T. Baei, A. V. Moradi, M. Moghimi, and P. Torabi (2011). Comput. Theor. Chem. 967, 179.

    Article  CAS  Google Scholar 

  17. M. T. Baei, A. V. Moradi, P. Torabi, and M. Moghimi (2011). Monatsh. Chem. 142, 1097.

    Article  CAS  Google Scholar 

  18. P. K. Chattaraj, U. Sarkar, and D. R. Roy (2006). Chem. Rev. 106, 2065.

    Article  CAS  Google Scholar 

  19. K. K. Hazarika, N. C. Baruah, and R. C. Deka (2009). Struct. Chem. 20, 1079.

    Article  CAS  Google Scholar 

  20. R. G. Parr, L. Szentpaly, and S. Liu (1999). J. Am. Chem. Soc. 121, 1922.

    Article  CAS  Google Scholar 

  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheese-man, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople Gaussian 03, Revision B03 (Gaussian Inc., Pittsburgh, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad T. Baei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baei, M.T., Peyghan, A.A., Moghimi, M. et al. Effect of Gallium Doping on Electronic and Structural Properties (6,0) Zigzag Silicon Carbide Nanotube as a p-Semiconductor. J Clust Sci 23, 1119–1132 (2012). https://doi.org/10.1007/s10876-012-0507-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0507-6

Keywords

Navigation