Skip to main content
Log in

Phosphotungstic Acid Nanoclusters Grafted onto High Surface Area Hydrous Zirconia as Efficient Heterogeneous Catalyst for Synthesis of Octahydroquinazolinones and β-Acetamido Ketones

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Phostungstic acid (PWA) nanoclusters grafted onto high surface area polycrystalline hydrous zirconia powder (PWA/ZrO2) was prepared by wet impregnation method. The zirconia particles were synthesized using a modified sol–gel route. The obtained material was characterized by X-ray diffraction (XRD), UV–Vis–diffuse reflectance spectroscopy (UV–Vis–NIR–DRS), infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and sorptometric techniques. XRD study revealed the presence of tetragonal phase of zirconia in the synthesized sample. TEM study indicates presence of small PWA clusters with size in the range of 5–15 nm well dispersed on the surface of the ZrO2 particles. The characteristic UV and IR absorption feature of the PWA was retained in the PWA/ZrO2 material. The PWA/ZrO2 material was used as an efficient catalyst for the preparation of octahydroquinazolinones and β-acetamido ketones. The octahydroquinazolinones were synthesized by the multicomponent condensation of dimedones, urea and aryl aldehydes in ethanol. Similarly, β-acetamido ketones were synthesized with high yield and purity by four component condensation of aryl aldehydes, enolizable ketones, and acetyl chlorides in acetonitrile. The protocols developed in this investigation using the PWA/ZrO2 catalyst is advantageous in terms of simple experimentation, high yield and purity of the products and recovery and reutilization of the heterogeneous catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. A. Corma (1997). Chem. Rev. 97, 2373.

    Article  CAS  Google Scholar 

  2. I. V. Kozhevnikov (1998). Chem. Rev. 98, 171.

    Article  CAS  Google Scholar 

  3. D. Brunel, A. C. Blanc, A. Galarneau, and F. Fajula (2002). Catal. Today 73, 139.

    Article  CAS  Google Scholar 

  4. H. U. Blaser and M. Studer (1999). Appl. Catal. A 189, 191.

    Article  CAS  Google Scholar 

  5. N. Mizuno and M. Misono (1998). Chem. Rev. 98, 199.

    Article  CAS  Google Scholar 

  6. T. Okuhara (2002). Chem. Rev. 102, 3641.

    Article  CAS  Google Scholar 

  7. P. Gouzerh and A. Proust (1998). Chem. Rev. 98, 3641.

    Article  Google Scholar 

  8. A. Corma (1995). Chem. Rev. 95, 559.

    Article  CAS  Google Scholar 

  9. Y. Izumi, K. Urabe, and M. Onaka Zeolite, Clay and Heteropoly Acid in Organic Reactions (Kodansha/VCH, Tokyo, 1992).

    Google Scholar 

  10. G. D. Kishore Kumar and S. Bhaskaran (2005). J. Org. Chem. 70, 4520.

    Article  CAS  Google Scholar 

  11. A. M. Khenkin, L. Weiner, and R. Neumann (2005). J. Am. Chem. Soc. 127, 9988.

    Article  CAS  Google Scholar 

  12. A. M. Khenkin and R. Neumann (2002). J. Org. Chem. 67, 7075.

    Article  CAS  Google Scholar 

  13. V. V. Srdic and M. Winterer (2006). J. Eur. Ceram. Soc. 26, 3145.

    Article  CAS  Google Scholar 

  14. C. R. Deltcheff, M. Frank, and R. Thouvenot (1983). Inorg. Chem. 22, 207.

    Article  Google Scholar 

  15. S. Farhadi and M. Zaidi (2009). Appl. Catal. A 354, 119.

    Article  CAS  Google Scholar 

  16. Y. Yang, Q. Wu, Y. Guo, C. Hu, and E. Wang (2005). J. Mol. Catal. A 225, 203.

    Article  CAS  Google Scholar 

  17. E. F. López, V. S. Escribano, M. Panizza, M. M. Carnascialic, and G. Busca (2001). J. Mater. Chem. 11, 1891.

    Article  Google Scholar 

  18. M. Li, Z. Feng, G. Xiong, P. Ying, Q. Xin, and C. Li (2001). J. Phys. Chem. B 105, 107.

    Google Scholar 

  19. G. Ranga Rao and T. Rajkumar (2008). Catal. Lett. 120, 261.

    Article  Google Scholar 

  20. K. M. Parida and S. Mallick (2007). J. Mol. Catal. A 275, 77.

    Article  CAS  Google Scholar 

  21. L. M. Coyne, J. Bishop, L. Scattergood, A. Banin, G. Carle, and J. Orenberg, in L. M. Coyne, S. W. S. McKeever, and D. F. Blake (eds.), Spectroscopic Characterization of Minerals and Their Surfaces (ACS Symposium Series, Washington, 1990).

  22. G. Ranga Rao, T. Rajkumar, and B. Varghese (2009). Solid State Sci. 11, 36.

    Article  CAS  Google Scholar 

  23. M. Kidwai, S. Saxena, M. K. Khan, and S. S. Thukral (2005). Eur. J. Med. Chem. 40, 816.

    Article  CAS  Google Scholar 

  24. J. J. V. Eynde, J. Godin, A. Mayence, A. Maquestiau, and E. Anders (1993). Synthesis 9, 867.

    Article  Google Scholar 

  25. Z. Hassani, M. R. Islami, and M. Kalantari (2006). Bioorg. Med. Chem. Lett. 16, 4479.

    Article  CAS  Google Scholar 

  26. H. Lin, Q. Zhao, B. Xu, and X. Wang (2007). J. Mol. Catal. A 268, 221.

    Article  CAS  Google Scholar 

  27. S. Kantevari, R. Bantu, and L. Nagarapu (2006). ARKIVOC xvi, 136.

    Google Scholar 

  28. M. Yarim, S. Sarac, F. S. Kilic, and K. Erol (2003). Il Farmaco 58, 17.

    Article  CAS  Google Scholar 

  29. J. M. Khurana and S. Kumar (2010). Monatsh. Chem. 141, 561.

    Article  CAS  Google Scholar 

  30. K. S. Niralwad, B. B. Shingate, and M. S. Shingare (2010). Tetrahedron Lett. 51, 3616.

    Article  CAS  Google Scholar 

  31. B. G. Mishra, D. Kumar, and V. S. Rao (2006). Catal. Commun. 7, 457.

    Article  CAS  Google Scholar 

  32. D. Kumar, B. G. Mishra, and M. S. Swapna (2006). Chem. Lett. 35, 1074.

    Article  CAS  Google Scholar 

  33. U. Dahn, H. Hagenmaier, H. Hohne, W. A. Konig, G. Wolf, and H. Zahner (1976). Arch. Microbiol. 107, 249.

    Article  Google Scholar 

  34. M. Mukhopadhyay, B. Bhatia, and J. Lqbal (1997). Tetrahedron Lett. 38, 1083.

    Article  CAS  Google Scholar 

  35. G. Pandey, R. P. Singh, A. Garg, and V. K. Singh (2005). Tetrahedron Lett. 46, 2137.

    Article  CAS  Google Scholar 

  36. R. Ghosh, S. Maity and A. Chakraborty (2005). Synlett 115.

  37. R. Ghosh, S. Maiti, A. Chakraborty, S. Chakraborty, and A. K. Mukherjee (2006). Tetrahedron 62, 4059.

    Article  CAS  Google Scholar 

  38. A. T. Khan, T. Parvin, and L. H. Choudhury (2007). Tetrahedron 63, 5593.

    Article  CAS  Google Scholar 

  39. D. Bahulayan, S. K. Das, and J. Iqbal (2003). J. Org. Chem. 68, 5735.

    Article  CAS  Google Scholar 

  40. M. M. Khodaei, A. R. Khosropour, and P. Fattahpour (2005). Tetrahedron Lett. 46, 2105.

    Article  CAS  Google Scholar 

  41. T. Yakaiah, G. Reddy, B. P. Lingaiah, B. Narsaiah, and P. S. Rao (2005). Synth. Commun. 35, 1307.

    Article  CAS  Google Scholar 

  42. M. T. Maghsoodlou, A. Hassankhani, H. R. Shaterian, S. Mostafa, and E. Mosaddegh (2007). Tetrahedron Lett. 48, 1729.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank DST and CSIR, New Delhi for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naik, M.A., Samantaray, S. & Mishra, B.G. Phosphotungstic Acid Nanoclusters Grafted onto High Surface Area Hydrous Zirconia as Efficient Heterogeneous Catalyst for Synthesis of Octahydroquinazolinones and β-Acetamido Ketones. J Clust Sci 22, 295–307 (2011). https://doi.org/10.1007/s10876-011-0384-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0384-4

Keywords

Navigation