Skip to main content

Advertisement

Log in

The Ex Vivo Production of IL-6 and IL-21 by CD4+ T Cells is Directly Associated with Neurological Disability in Neuromyelitis Optica Patients

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Neuromyelitis optica (NMO), also known as Devic’s disease, is an autoimmune, inflammatory disorder of the central nervous system (CNS) in which the immune system attacks myelin of the neurons located at the optic nerves and spinal cord, thus producing a simultaneous or sequential optic neuritis and myelitis. The objective of this study was evaluated the background T-cell function of patients suffering from neuromyelitis optica (NMO), an autoimmune disorder of the central nervous system. In our study, the in vitro T cell proliferation and the production of Th1 cytokines were significantly lower in cell cultures from NMO patients, as compared with healthy individuals. In contrast, a dominant Th17-like phenotype, associate with higher IL-23 and IL-6 production by LPS-activated monocytes, was observed among NMO patients. The release of IL-21 and IL-6 by polyclonaly activated CD4+ T cells was directly correlated to neurological disability. In addition, the in vitro release of IL-21, IL-6 and IL-17 was significantly more resistant to glucocorticoid inhibition in NMO patients. In conclusion, the results indicate dominate Th17-related response in NMO patients that was directly proportional to neurological disability. Furthermore, our results can help to explain why NMO patients trend to be more refractory to corticoid treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wingerchuk D, Lennon V, Lucchinetti C, Pittock S, Weinchenker B. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6:805–15.

    Article  PubMed  CAS  Google Scholar 

  2. Devic E. Myélite aiguë dorse-lombaire de névrite optique, autopsie. Congress Français de méd. Premiere Seance. 1984;9:434–9.

    Google Scholar 

  3. Mandler RN, Davis LE, Jeffery DR, Kornfeld M. Devic’s neuromyelitis optica: a clinicopathological study of 8 patients. Ann Neurol. 1993;34:162–8.

    Article  PubMed  CAS  Google Scholar 

  4. Wingerchuk DM, Hogancamp WF, O’Brien PC, Weinshenker BG. The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology. 1999;53:1107–14.

    Article  PubMed  CAS  Google Scholar 

  5. Mandler R, Ahmed W, Dencoff J. Devic’s neuromyelitis optica: a prospective study of seven pacients treated with prednisone and azathioprine. Neurology. 1998;51:1219–20.

    Article  PubMed  CAS  Google Scholar 

  6. Weeinshenker BG. Plasma exchange for severe attacks of inflammatory demyelinating diseases of the central nervous system. J Clin Apheresis. 2001;16:39–42.

    Article  Google Scholar 

  7. Lennon VA, Wingerchuch DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara CF, et al. Serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet. 2004;364:2106–12.

    Article  PubMed  CAS  Google Scholar 

  8. Pittock SJ, Weinshenker BG, Lucchinetti CF, Wingerchuk DM, Corboy JR, Lennon VA. Neuromyelitis optica brain lesions localized at sites of high Aquaporin 4 expression. Arch Neuro. 2006;63:964–8.

    Article  Google Scholar 

  9. Kira J, Yamasaki K, Horiuchi I, Ohyagi Y, Taniwaki T, Kawano Y. Changes in the clinical phenotypes of Multiple Sclerosis during the past 50 years in Japan. J Neurol Sci. 1999;166:53–7.

    Article  PubMed  CAS  Google Scholar 

  10. Cabrera-Gomez JA, Kurtzke JF, Gonzalez-Quevedo A, Lara-Rodriguez R. An epidemiological study of neuromyelitis optica in cuba. J Neurol. 2009;256(256):35–44.

    Article  PubMed  Google Scholar 

  11. Papais-Alvarenga RM, Miranda-Santos CM, Puccioni-Sohler M, de Almeida AM, Oliveira S, Basílio de Oliveira CA, Alvarenga H, Poser CM. Optic neuromyelitis syndrome in Brazilian patients. J Neurol Neurosurg Psychiatry. 2002;73:429–35.

    Article  PubMed  CAS  Google Scholar 

  12. Kurtzke JF. Rating neurologyc impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33:1444–52.

    Article  PubMed  CAS  Google Scholar 

  13. Papais-Alvarenga RM, Carellos SC, Alvareng MP, Holander C, Bichara RP, Thuler LCS. Clinical course of optic neuritis in patients with relapsing neuromyelitis optica. Arch Ophthalmol. 2008;126:12–6.

    Article  PubMed  Google Scholar 

  14. Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG. Revised diagnostic criteria for neuromyelitis optica. Neurology. 2006;66:1485–9.

    Article  PubMed  CAS  Google Scholar 

  15. Argyriou AA, Makris N. Neuromyelitis optica: a distinct demyelinating disease of the central nervous system. Acta Neurol Scand. 2008;118:209–17.

    Article  PubMed  CAS  Google Scholar 

  16. Wingerchuk DM, Hogancamp WF, O’brien PC, Weinshenker BG. The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology. 1999;53:1107–14.

    Article  PubMed  CAS  Google Scholar 

  17. Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM, et al. A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain. 2002;125:1450–61.

    Article  PubMed  Google Scholar 

  18. Lefkowitz D, Angelo JN. Neuromyelitis optica with unusual vascular changes. Arch Neurol. 1984;41:1103–5.

    Article  PubMed  CAS  Google Scholar 

  19. Roemer SF, Parisi JE, Lennon VA, et al. Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain. 2007;130:1194–205.

    Article  PubMed  Google Scholar 

  20. Sinclair C, Kirk J, Herron B, Fitzgerald U, Mcquaid S. Absence of aquaporin-4 expression in lesions of neuromyelitis optica but increased expression in multiple sclerosis lesions and normal-appearing white matter. Acta Neuropathol (Berl). 2007;113:187–94.

    Article  CAS  Google Scholar 

  21. Krishnamoorthy G, Lassmann H, Wekerle H, Holz A. Spontaneous opticaspinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest. 2006;116:2385.

    Article  PubMed  CAS  Google Scholar 

  22. Matsuya N, Komori M, Nomura K, Nakane S, Fukudome T, Goto H, et al. Increased T-cell immunity against aquaporin-4 and proteolipid protein in neuromyelitis optica. Internat Immunol. 2011;23:565–73.

    Article  CAS  Google Scholar 

  23. Ishizu T, Osoegawa M, Mei F-J, Kikuchi H, Tanaka M, Takakura Y, et al. Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain. 2005;128:988–1002.

    Article  PubMed  Google Scholar 

  24. Uzawa A, Mori M, Arai K, Sato Y, Hayakawa S, Masuda S, et al. Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6. Multiple Sclerosis. 2010;16:1443–52.

    Article  PubMed  CAS  Google Scholar 

  25. Wang HH, Dai YQ, Qiu W, Lu ZQ, Peng FH, Wang YG, et al. Interleukin-17-secreting T cells in neuromyelitis optica and multiple sclerosis during relapse. J Clin Neuroscience. 2011;18:1313–7.

    Article  CAS  Google Scholar 

  26. Li Y, Wang H, Long Y, Lu Z, Hu X. Increased memory Th7 cells in patients with neuromyelitis optica and multiple sclerosis. J Neuroimmunol. 2011;234:155–60.

    Article  PubMed  CAS  Google Scholar 

  27. Gutcher I, Becher B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest. 2007;117:1119–25.

    Article  PubMed  CAS  Google Scholar 

  28. Crozat K, Vivier E, Dalod M. Crosstalk between components of the innate immune system: promoting anti-microbial defenses and avoiding immunopathologies. Immunol Rev. 2009;227:129–49.

    Article  PubMed  CAS  Google Scholar 

  29. Ekkens MJ, Liu Z, Liu Q, Whitmire J, Xiao S, Foster A, et al. The role of OX40 ligand interactions in the development of the Th2 response to the gastrointestinal nematode parasite Heligmosomoides polygyrus. J Immunol. 2003;170:384–93.

    PubMed  CAS  Google Scholar 

  30. Andoh A, Takaya H, Makino J, Sato H, Bamba S, Araki Y, et al. Cooperation of interleukin-17 and interferon-gamma on chemokine secretion in human fetal intestinal epithelial cells. Clin Exp Immunol. 2001;125:56–63.

    Article  PubMed  CAS  Google Scholar 

  31. Matsuzaki G, Umemura M. IL-17 as an effetor molecule of innate and acquired immunity against infections. Microbiol Immunonol. 2007;51:1139–47.

    CAS  Google Scholar 

  32. Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol. 1998;160:3513–21.

    PubMed  CAS  Google Scholar 

  33. Lovett-Racke AE, Yang Y, Racke MK. Th1 versus Th17: are T cell cytokines relevant in multiple sclerosis. Biochimica et Biophysica Acta. 1812;2011:246–51.

    Google Scholar 

  34. Miossec P. IL-17 and Th17 cells in human inflammatory diseases. Microb Infect. 2009;11:625–30.

    Article  CAS  Google Scholar 

  35. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8:523–32.

    Article  PubMed  CAS  Google Scholar 

  36. Shevach EM. Mechanisms of Foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30:636–45.

    Article  PubMed  CAS  Google Scholar 

  37. Maynard CL, Harrington LE, Janowski KM, Oliver JR, Zindl CL, Rudensky AY. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3-precursor cells in the absence of interleukin 10 Nat. Immunol. 2007;8:931–41.

    CAS  Google Scholar 

  38. Kitani A, Fuss I, Nakamura K, Kumaki F, Usui T, Strober W. Transforming growth factor (TGF)-beta1-producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitates coordinated immunoregulatory activity and amelioration of TGF-beta1-mediated fibrosis. J Exp Med. 2003;198:1179–88.

    Article  PubMed  CAS  Google Scholar 

  39. McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: Contribution of CD4 + CD25+ regulatory T cells within the central nervous system. J Immunol. 2005;175:3025–32.

    PubMed  CAS  Google Scholar 

  40. Belkaid Y. Regulatory T, cells and infection: a dangerous necessity. Nat Rev Immunol. 2007;7:875–88.

    Article  PubMed  CAS  Google Scholar 

  41. Li MO, Flavell RA. Contextual regulation of inflammation: a duet by transforming growth factor-b and interleukin-10. Immunity. 2008;8:468–76.

    Article  Google Scholar 

  42. Agarwal SK, Marshall SGD. Glucocorticoid-induced type 1/type 2 cytokine alterations in humans: a model for stress-related immune dysfunction. J Interferon Cytokine Res. 1998;18:1059–68.

    Article  PubMed  CAS  Google Scholar 

  43. Zygmunt B, Veldhoen M. T helper cell differentiation more than just cytokines. Adv Immunol. 2011;109:159–96.

    Article  PubMed  CAS  Google Scholar 

  44. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SH. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med. 2005;202:473–7.

    Article  PubMed  CAS  Google Scholar 

  45. Merrill JE, Mohlstrom C, Uittenbogaart C, Kermaniarab V, Ellison GW, Myers LW. Response to and production of interleukin 2 by peripheral blood and cerebrospinal fluid lymphocytes of patients with multiple sclerosis. JImmunol. 1984;133:1931–7.

    CAS  Google Scholar 

  46. Killestein J, Hintzen RQ, Uitdehaag BM, Baars PA, Roos MT, van Lier RA, et al. Baseline T cell reactivity in multiple sclerosis is correlated to efficacy of interferon-beta. J Neuroimmunol. 2002;133:217–24.

    Article  PubMed  CAS  Google Scholar 

  47. Méndez-Samperio P. Role of interleukin-12 family cytokines in the cellular response to mycobacterial disease. Int J Infect Dis. 2010;14:e366–71.

    Article  PubMed  Google Scholar 

  48. Akkoc T, Koning PJ, Rückert B, Barlan I, Akdis M, Akdis CA. Increased activation-induced cell death of high IFN-gamma-producing T(H)1 cells as a mechanism of T(H)2 predominance in atopic diseases. J Allergy Clin Immunol. 2008;121:652–8.

    Article  PubMed  CAS  Google Scholar 

  49. Costa VS, Mattana TC, da Silva ME. Unregulated IL-23/IL-17 immune response in autoimmune diseases. Diabetes Res Clin Pract. 2010;88:222–6.

    Article  PubMed  CAS  Google Scholar 

  50. Morrison PJ, Ballantyne MC. Interleukin-23 and T helper 17-type responses in intestinal inflammation: from cytokines to T-cell plasticity. Immunology. 2011;133:397–408.

    Article  PubMed  CAS  Google Scholar 

  51. Kira J-I. Neuromyelitis optica and opticospinal multiple sclerosis: mechanisms and pathogenesis. Pathophysiology. 2011;18:69–79.

    Article  PubMed  CAS  Google Scholar 

  52. Mihara M, Hashizume M, Yoshida H, Suzuki M, Shiina M. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci (Lond). 2012;122:143–59.

    Article  CAS  Google Scholar 

  53. Matiello M, Jacob A, Wingerchuk DM, Weinshenker BG. Neuromyelitis optica. Curr Opin Neurol. 2007;20:255–60.

    Article  PubMed  Google Scholar 

  54. Spolski R, Leonard WJ. IL-21 and T follicular helper cells. Int Immunol. 2009;22:7–12.

    Article  PubMed  Google Scholar 

  55. Matsuya N, Komori M, Nomura K, Nakane S, Fukudome T, Goto H, Shiraishi H, Wandinger KP, Matsuo H, Kondo T. Increased T-cell immunity against aquaporin-4 and proteolipid protein in neuromyelitis optica. Int Immunol. 2011;23(9):565–73.

    Article  PubMed  CAS  Google Scholar 

  56. Buckner JH. Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol. 2010;10:849–59.

    Article  PubMed  CAS  Google Scholar 

  57. Ashwell JD, Lu FW, Vacchio MS. Glucocorticoids in T cell development and function. Annu Rev Immunol. 2000;18:309–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

All authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleonice A. M. Bento.

Additional information

This work was supported by Fundação Carlos Chagas Filho de amparo à pesquisa do estado do Rio de Janeiro (FAPERJ) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linhares, U.C., Schiavoni, P.B., Barros, P.O. et al. The Ex Vivo Production of IL-6 and IL-21 by CD4+ T Cells is Directly Associated with Neurological Disability in Neuromyelitis Optica Patients. J Clin Immunol 33, 179–189 (2013). https://doi.org/10.1007/s10875-012-9780-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9780-2

Keywords

Navigation