Skip to main content
Log in

Calcitriol Decreases Expression of Importin α3 and Attenuates RelA Translocation in Human Bronchial Smooth Muscle Cells

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

A potent immunomodulatory role of Vitamin D in both innate and adaptive immunity has recently been appreciated. In allergic asthma, activation of NF-кB induces transcription of various cytokines and chemokines involved in allergic airway inflammation. The nuclear import of activated NF-кB p50/RelA subunit is dependent on importin α3 (KPNA4) and importin α4 (KPNA3). In this study, we examined the role of importin α3 in immunomodulatory effect of calcitriol in human bronchial smooth muscle cells (HBSMCs).

Methods

Cultured HBSMCs were stimulated with calcitriol in the presence and absence of cytokines, TNF-α, IL-1β, and IL-10. The mRNA transcripts of importin α3 and α4 were analyzed using qPCR while protein expression of importin α3, α4 and nuclear RelA was analyzed by immunoblotting.

Results

Calcitriol significantly decreased mRNA and protein expression of importin α3 as well as nuclear protein expression of NF-кB p65 (RelA). The decreased activation of RelA by calcitriol was confirmed by decreased release of RelA-inducible molecules, including IL-5, IL-6 and IL-8, by HBSMCs upon calcitriol treatment. Calcitriol attenuated the effect of TNF-α and IL-1β to upregulate mRNA and protein expression of importin α3. IL-10 significantly decreased the TNF-α induced expression of importin α3 and this effect was further potentiated by calcitriol.

Conclusions

These data suggest that under inflammatory conditions, calcitriol decreases the expression of importin α3 resulting in decreased nuclear import of activated RelA. This could be a novel mechanism by which calcitriol could exert its immunomodulatory effects to reduce allergic airway inflammation and thus may alleviate the symptoms in allergic asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agrawal DK, Shao Z. Pathogenesis of allergic airway inflammation. Curr Allergy Asthma Rep. 2010;10(1):39–48.

    Article  PubMed  CAS  Google Scholar 

  2. McGee HS, Stallworth AL, Agrawal T, Shao Z, Lorence L, Agrawal DK. Fms-like tyrosine kinase 3 ligand decreases t helper type 17 cells and suppressors of cytokine signaling proteins in the lung of house dust mite-sensitized and -challenged mice. Am J Respir Cell Mol Biol. 2010;43(5):520–9.

    Article  PubMed  CAS  Google Scholar 

  3. Gupta GK, Agrawal DK. Cpg oligodeoxynucleotides as tlr9 agonists: therapeutic application in allergy and asthma. BioDrugs. 2010;24(4):225–35.

    Article  PubMed  CAS  Google Scholar 

  4. Bosse Y, Maghni K, Hudson TJ. 1alpha,25-dihydroxy-vitamin d3 stimulation of bronchial smooth muscle cells induces autocrine, contractility, and remodeling processes. Physiol Genomics. 2007;29(2):161–8.

    PubMed  CAS  Google Scholar 

  5. Gerthoffer WT, Singer CA. Secretory functions of smooth muscle: cytokines and growth factors. Mol Interv. 2002;2(7):447–56.

    Article  PubMed  CAS  Google Scholar 

  6. Tliba O, Panettieri Jr RA. Noncontractile functions of airway smooth muscle cells in asthma. Annu Rev Physiol. 2009;71:509–35.

    Article  PubMed  CAS  Google Scholar 

  7. Hershenson MB, Brown M, Camoretti-Mercado B, Solway J. Airway smooth muscle in asthma. Annu Rev Pathol. 2008;3:523–55.

    Article  PubMed  CAS  Google Scholar 

  8. Wertz IE, Dixit VM. Signaling to NF-kappab: regulation by ubiquitination. Cold Spring Harb Perspect Biol. 2010;2(3):a003350.

    Article  PubMed  Google Scholar 

  9. Agrawal DK, Ariyarathna K, Kelbe PW. (s)-albuterol activates pro-constrictory and pro-inflammatory pathways in human bronchial smooth muscle cells. J Allergy Clin Immunol. 2004;113(3):503–10.

    Article  PubMed  CAS  Google Scholar 

  10. Edwards MR, Bartlett NW, Clarke D, Birrell M, Belvisi M, Johnston SL. Targeting the nf-kappab pathway in asthma and chronic obstructive pulmonary disease. Pharmacol Ther. 2009;121(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  11. Barnes PJ, Karin M. Nuclear factor-kappab: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336(15):1066–71.

    Article  PubMed  CAS  Google Scholar 

  12. Brar SS, Kennedy TP, Sturrock AB, Huecksteadt TP, Quinn MT, Murphy TM, et al. Nadph oxidase promotes nf-kappab activation and proliferation in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2002;282(4):L782–95.

    PubMed  CAS  Google Scholar 

  13. Pahl HL. Activators and target genes of rel/nf-kappab transcription factors. Oncogene. 1999;18(49):6853–66.

    Article  PubMed  CAS  Google Scholar 

  14. Xu SY, Xu YJ, Zhang ZX, Ni W, Chen SX. Effect of nuclear factor-kappab on signal transduction of passively sensitized human airway smooth muscle cells proliferation. Zhonghua Nei Ke Za Zhi. 2004;43(12):891–5.

    PubMed  CAS  Google Scholar 

  15. Wright HL, Chikura B, Bucknall RC, Moots RJ, Edwards SW. Changes in expression of membrane tnf, nf-{kappa}b activation and neutrophil apoptosis during active and resolved inflammation. Ann Rheum Dis. 2011;70(3):537–43.

    Article  PubMed  CAS  Google Scholar 

  16. Song J, So T, Croft M. Activation of nf-kappab1 by ox40 contributes to antigen-driven t cell expansion and survival. J Immunol. 2008;180(11):7240–8.

    PubMed  CAS  Google Scholar 

  17. Fagerlund R, Kinnunen L, Kohler M, Julkunen I, Melen K. Nf-{kappa}b is transported into the nucleus by importin {alpha}3 and importin {alpha}4. J Biol Chem. 2005;280(16):15942–51.

    Article  PubMed  CAS  Google Scholar 

  18. Theiss AL, Jenkins AK, Okoro NI, Klapproth JM, Merlin D, Sitaraman SV. Prohibitin inhibits tumor necrosis factor alpha-induced nuclear factor-kappa b nuclear translocation via the novel mechanism of decreasing importin alpha3 expression. Mol Biol Cell. 2009;20(20):4412–23.

    Article  PubMed  CAS  Google Scholar 

  19. Okada N, Ishigami Y, Suzuki T, Kaneko A, Yasui K, Fukutomi R, et al. Importins and exportins in cellular differentiation. J Cell Mol Med. 2008;12(5B):1863–71.

    Article  PubMed  CAS  Google Scholar 

  20. Caramori G, Oates T, Nicholson AG, Casolari P, Ito K, Barnes PJ, et al. Activation of nf-kappab transcription factor in asthma death. Histopathology. 2009;54(4):507–9.

    Article  PubMed  Google Scholar 

  21. D’Acquisto F, May MJ, Ghosh S. Inhibition of nuclear factor kappa b (nf-b): an emerging theme in anti-inflammatory therapies. Mol Interv. 2002;2(1):22–35.

    Article  PubMed  Google Scholar 

  22. Bosse Y, Lemire M, Poon AH, Daley D, He JQ, Sandford A, et al. Asthma and genes encoding components of the vitamin d pathway. Respir Res. 2009;10:98–112.

    Article  PubMed  Google Scholar 

  23. Carlberg C, Seuter S. The vitamin d receptor. Dermatol Clin. 2007;25(4):515–23. viii.

    Article  PubMed  CAS  Google Scholar 

  24. Damera G, Fogle HW, Lim P, Goncharova EA, Zhao H, Banerjee A, et al. Vitamin d inhibits growth of human airway smooth muscle cells through growth factor-induced phosphorylation of retinoblastoma protein and checkpoint kinase 1. Br J Pharmacol. 2009;158(6):1429–41.

    Article  PubMed  CAS  Google Scholar 

  25. Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin d(3) receptor in the immune system. Arch Biochem Biophys. 2000;374(2):334–8.

    Article  PubMed  CAS  Google Scholar 

  26. Hewison M, Freeman L, Hughes SV, Evans KN, Bland R, Eliopoulos AG, et al. Differential regulation of vitamin d receptor and its ligand in human monocyte-derived dendritic cells. J Immunol. 2003;170(11):5382–90.

    PubMed  CAS  Google Scholar 

  27. Pankajakshan D, Makinde TO, Gaurav R, Del Core M, Hatzoudis G, Pipinos I, et al. Successful transfection of genes using aav-2/9 vector in swine coronary and peripheral arteries. J Surg Res. 2011 Mar 21. [Epub ahead of print]PMID: 21529824.

  28. Gupta GK, Dhar K, Del Core MG, Hunter 3rd WJ, Hatzoudis GI, Agrawal DK. Suppressor of cytokine signaling-3 and intimal hyperplasia in porcine coronary arteries following coronary intervention. Exp Mol Pathol. 2011;91(1):346–52.

    Article  PubMed  CAS  Google Scholar 

  29. Hohmann HP, Remy R, Scheidereit C, van Loon AP. Maintenance of nf-kappa b activity is dependent on protein synthesis and the continuous presence of external stimuli. Mol Cell Biol. 1991;11(1):259–66.

    PubMed  CAS  Google Scholar 

  30. Peng X, Mehta R, Wang S, Chellappan S, Mehta RG. Prohibitin is a novel target gene of vitamin d involved in its antiproliferative action in breast cancer cells. Cancer Res. 2006;66(14):7361–9.

    Article  PubMed  CAS  Google Scholar 

  31. Banerjee A, Damera G, Bhandare R, Gu S, Lopez-Boado Y, Panettieri Jr R, et al. Vitamin d and glucocorticoids differentially modulate chemokine expression in human airway smooth muscle cells. Br J Pharmacol. 2008;155(1):84–92.

    Article  PubMed  CAS  Google Scholar 

  32. Nguyen M, Trubert CL, Rizk-Rabin M, Rehan VK, Besancon F, Cayre YE, et al. 1,25-dihydroxyvitamin d3 and fetal lung maturation: immunogold detection of vdr expression in pneumocytes type ii cells and effect on fructose 1,6 bisphosphatase. J Steroid Biochem Mol Biol. 2004;89–90(1–5):93–7.

    Article  PubMed  Google Scholar 

  33. Nguyen TM, Guillozo H, Marin L, Tordet C, Koite S, Garabedian M. Evidence for a vitamin d paracrine system regulating maturation of developing rat lung epithelium. Am J Physiol. 1996;271(3 Pt 1):L392–9.

    PubMed  CAS  Google Scholar 

  34. Edelson JD, Chan S, Jassal D, Post M, Tanswell AK. Vitamin d stimulates DNA synthesis in alveolar type-ii cells. Biochim Biophys Acta. 1994;1221(2):159–66.

    Article  PubMed  CAS  Google Scholar 

  35. Litonjua AA, Weiss ST. Is vitamin d deficiency to blame for the asthma epidemic? J Allergy Clin Immunol. 2007;120(5):1031–5.

    Article  PubMed  CAS  Google Scholar 

  36. Brehm JM, Celedon JC, Soto-Quiros ME, Avila L, Hunninghake GM, Forno E, et al. Serum vitamin d levels and markers of severity of childhood asthma in costa rica. Am J Respir Crit Care Med. 2009;179(9):765–71.

    Article  PubMed  CAS  Google Scholar 

  37. Sutherland ER, Goleva E, Jackson LP, Stevens AD, Leung DY. Vitamin d levels, lung function, and steroid response in adult asthma. Am J Respir Crit Care Med. 2010;181(7):699–704.

    Article  PubMed  CAS  Google Scholar 

  38. Zosky GR, Berry LJ, Elliot JG, James AL, Gorman S, Hart PH. Vitamin d deficiency causes deficits in lung function and alters lung structure. Am J Respir Crit Care Med. 2011;183(10):1336–43.

    Article  PubMed  Google Scholar 

  39. Gupta A, Sjoukes A, Richards D, Banya W, Hawrylowicz C, Bush A, et al. Relationship between serum vitamin d, disease severity, and airway remodeling in children with asthma. Am J Respir Crit Care Med. 2011;184(12):1342–9.

    Article  PubMed  CAS  Google Scholar 

  40. D’Ambrosio D, Cippitelli M, Cocciolo MG, Mazzeo D, Di Lucia P, Lang R, et al. Inhibition of il-12 production by 1,25-dihydroxyvitamin d3. Involvement of nf-kappab downregulation in transcriptional repression of the p40 gene. J Clin Invest. 1998;101(1):252–62.

    Article  PubMed  Google Scholar 

  41. Harant H, Wolff B, Lindley IJ. 1alpha,25-dihydroxyvitamin d3 decreases DNA binding of nuclear factor-kappab in human fibroblasts. FEBS Lett. 1998;436(3):329–34.

    Article  PubMed  CAS  Google Scholar 

  42. Riis JL, Johansen C, Gesser B, Moller K, Larsen CG, Kragballe K, et al. 1alpha,25(OH)(2)D(3) regulates NF-kappab DNA binding activity in cultured normal human keratinocytes through an increase in ikappabalpha expression. Arch Dermatol Res. 2004;296(5):195–202.

    Article  PubMed  CAS  Google Scholar 

  43. Giarratana N, Penna G, Amuchastegui S, Mariani R, Daniel KC, Adorini L. A vitamin d analog down-regulates proinflammatory chemokine production by pancreatic islets inhibiting t cell recruitment and type 1 diabetes development. J Immunol. 2004;173(4):2280–7.

    PubMed  CAS  Google Scholar 

  44. Sun J, Kong J, Duan Y, Szeto FL, Liao A, Madara JL, et al. Increased nf-kappab activity in fibroblasts lacking the vitamin d receptor. Am J Physiol Endocrinol Metab. 2006;291(2):E315–22.

    Article  PubMed  CAS  Google Scholar 

  45. Dhingra S, Sharma AK, Arora RC, Slezak J, Singal PK. Il-10 attenuates tnf-alpha-induced nf kappab pathway activation and cardiomyocyte apoptosis. Cardiovasc Res. 2009;82(1):59–66.

    Article  PubMed  CAS  Google Scholar 

  46. McGee HS, Agrawal DK. Naturally occurring and inducible t-regulatory cells modulating immune response in allergic asthma. Am J Respir Crit Care Med. 2009;180(3):211–25.

    Article  PubMed  CAS  Google Scholar 

  47. Smolders J, Thewissen M, Peelen E, Menheere P, Tervaert JW, Damoiseaux J, et al. Vitamin d status is positively correlated with regulatory t cell function in patients with multiple sclerosis. PLoS One. 2009;4(8):e6635.

    Article  PubMed  Google Scholar 

  48. Heine G, Niesner U, Chang HD, Steinmeyer A, Zugel U, Zuberbier T, et al. 1,25-dihydroxyvitamin D(3) promotes il-10 production in human b cells. Eur J Immunol. 2008;38(8):2210–8.

    Article  PubMed  CAS  Google Scholar 

  49. Holick CN, Stanford JL, Kwon EM, Ostrander EA, Nejentsev S, Peters U. Comprehensive association analysis of the vitamin d pathway genes, vdr, cyp27b1, and cyp24a1, in prostate cancer. Cancer Epidemiol Biomark Prev. 2007;16(10):1990–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01HL085680 and R01AI75315 to DKA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra K. Agrawal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 12 kb)

Figure S1

Effect of Calcitriol treatment on mRNA and protein expression of CYP24A1 (A, B) and CYP27B1 (C, D) in HBSMCs: Cultured HBSMCs were serum starved for 24 hr followed by treatment with different doses of calcitriol (0.1- 100 nM) for 24 hr. The mRNA and protein were isolated from cell lysates and subjected to qPCR and immunoblotting, respectively. Data is shown as mean ± SEM from three individual samples in each experiment; ***p<0.001. (TIFF 220 kb)

Figure S2

Effect of Calcitriol treatment on mRNA expression of VDR in HBSMCs: Cultured HBSMCs were serum starved for 24 hr followed by treatment with calcitriol (100 nM) for at times 0-36hr. The mRNA were isolated from cell lysates and subjected to qPCR. Data is shown as mean ± SEM from three individual samples; ***p<0.001 (TIFF 125 kb)

Figure S3

Effect of Calcitriol treatment on mRNA expression of importin α3 in HBSMCs: Cultured HBSMCs were serum starved for 24 hr followed by treatment with calcitriol (100 nM) for at times 0-36hr. The mRNA was isolated from cell lysates and subjected to qPCR. Data is shown as mean ± SEM from three individual samples; *p <0.05, **p<0.01, ***p <0.001. (TIFF 123 kb)

Figure S4

Effect of Calcitriol treatment on mRNA(A)and protein(B) expression of importin α4in HBSMCs: Cultured HBSMCs were serum starved for 24 hr followed by treatment with different doses of calcitriol (0.1- 100 nM) for 24 hr. The mRNA and protein were isolated from cell lysates and subjected to qPCR and immunoblotting, respectively. Data is shown as mean ± SEM from three individual samples (TIFF 122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, T., Gupta, G.K. & Agrawal, D.K. Calcitriol Decreases Expression of Importin α3 and Attenuates RelA Translocation in Human Bronchial Smooth Muscle Cells. J Clin Immunol 32, 1093–1103 (2012). https://doi.org/10.1007/s10875-012-9696-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9696-x

Keywords

Navigation