Skip to main content

Effects of Inflammatory Cytokines on Ca2+ Homeostasis in Airway Smooth Muscle Cells

  • Chapter
  • First Online:
Calcium Signaling In Airway Smooth Muscle Cells

Abstract

Crosstalk between airway inflammation and airway smooth muscle cells (ASMCs) contributes to airway hyperresponsiveness, a cardinal feature of asthma. The main putative mechanism underlying the agonist-induced intracellular Ca2+ ([Ca2+]i) transients in ASMCs is Ca2+ release from the sarcoplasmic reticulum (SR) via the inositol 1,4,5-trisphosphate (IP3) receptor and ryanodine receptor (RyR). Ca2+ depletion in SR then triggers store-operated Ca2+ entry (SOCE), Ca2+ influx from extracellular space. These mechanisms are modulated by inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-13, which have pivotal roles in asthma and chronic obstructive pulmonary disease (COPD).

TNF-α upregulates Gq and Gi protein expression, and interleukin (IL)-13 enhances histamine H1 receptor and cysteinyl leukotriene receptor 1, which enhances agonist-induced IP3/IP3 receptor signaling. Expression of CD38, which affects Ca2+ release from the SR via RyR, is upregulated with TNF-α, IL-13, and, to a lesser extent, interferon-γ and IL-1β pretreatment. TNF-α and IL-13 also augment SOCE and expression of caveolin-1, a scaffolding protein in caveolae, flask-shaped plasma membrane invaginations, which play a key role in Ca2+ signaling. Furthermore, both TNF-α and IL-13 decrease the expression of sarcoendoplasmic reticulum Ca2+ ATPase SERCA2, which transfers Ca2+ from the cytosol of the cell to the lumen of the SR to replenish Ca2+ in the SR. The downregulation of SERCA2 mimics altered Ca2+ homeostasis observed in asthma. This chapter describes the mechanisms that underlie the inflammatory cytokine-mediated modulation of [Ca2+]i in ASMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACh:

Acetylcholine

AHR:

Airway hyperresponsiveness

ASMC:

Airway smooth muscle cell

β2AR:

β2 adrenergic receptor

BKCa :

High-conductance Ca2+-activated potassium

[Ca2+]i :

Intracellular Ca2+

cADPR:

Cyclic ADP-ribose

CICR:

Ca2+-induced Ca2+ release

COPD:

Chronic obstructive pulmonary disease

CysLT1R:

Cysteinyl leukotriene receptor

DAG:

1,2-diacylglycerol

ERK:

Extracellular signal-regulated kinase

HASMC:

Human ASMC

IFN:

Interferon

IL:

Interleukin

IP3 :

Inositol 1,4,5-trisphosphate

JAK:

Janus kinase

JNK:

c-Jun N-terminal kinase

LTD4:

Leukotriene D4

MLCK:

Myosin light chain kinase

MLCP:

Myosin light chain phosphatase

PKA:

Protein kinase A

PKC:

Protein kinase C

ROCC:

Receptor-operated Ca2+ channels

ROCE:

Receptor-operated Ca2+ entry

RyR:

Ryanodine receptor

SERCA:

Sarcoendoplasmic reticulum Ca2+ ATPase

STAT:

Signal transducer and activator of transcription

STIM:

Stromal-interacting molecule

SOCC:

Store-operated Ca2+ channel

SOCE:

Store-operated Ca2+ entry

SR:

Sarcoplasmic reticulum

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

TNFR:

Tumor necrosis factor receptor

TRPC:

Transient receptor potential channels

TSLP:

Thymic stromal lymphopoietin

VOCC:

Voltage-operated Ca2+ channel

References

  1. Amrani Y, Bronner C (1993) Tumor necrosis factor α potentiates the increase in cytosolic free calcium induced by bradykinin in guinea-pig tracheal smooth muscle cells. C R Acad Sci III 316: 1489–1494.

    PubMed  CAS  Google Scholar 

  2. Amrani Y, Martinet N, Bronner C (1995) Potentiation by tumour necrosis factor-α of calcium signals induced by bradykinin and carbachol in human tracheal smooth muscle cells. Br J Pharmacol 114: 4–5.

    Article  PubMed  CAS  Google Scholar 

  3. Amrani Y, Panettieri RA, Jr., Frossard N, Bronner C (1996) Activation of the TNF α-p55 receptor induces myocyte proliferation and modulates agonist-evoked calcium transients in cultured human tracheal smooth muscle cells. Am J Respir Cell Mol Biol 15: 55–63.

    Article  PubMed  CAS  Google Scholar 

  4. Amrani Y, Krymskaya V, Maki C, Panettieri RA, Jr. (1997) Mechanisms underlying TNF-α effects on agonist-mediated calcium homeostasis in human airway smooth muscle cells. Am J Physiol 273: L1020–1028.

    PubMed  CAS  Google Scholar 

  5. Amrani Y, Panettieri RA, Jr. (1998) Cytokines induce airway smooth muscle cell hyperresponsiveness to contractile agonists. Thorax 53: 713–716.

    Article  PubMed  CAS  Google Scholar 

  6. Amrani Y, Chen H, Panettieri RA, Jr. (2000) Activation of tumor necrosis factor receptor 1 in airway smooth muscle: a potential pathway that modulates bronchial hyper-responsiveness in asthma? Respir Res 1: 49–53.

    Article  PubMed  CAS  Google Scholar 

  7. Amrani Y, Moore PE, Hoffman R, Shore SA, Panettieri RA, Jr. (2001) Interferon-γ modulates cysteinyl leukotriene receptor-1 expression and function in human airway myocytes. Am J Respir Crit Care Med 164: 2098–2101.

    Article  PubMed  CAS  Google Scholar 

  8. Anticevich SZ, Hughes JM, Black JL, Armour CL (1995) Induction of human airway hyperresponsiveness by tumour necrosis factor-α. Eur J Pharmacol 284: 221–225.

    Article  PubMed  CAS  Google Scholar 

  9. Ay B, Prakash YS, Pabelick CM, Sieck GC (2004) Store-operated Ca2+ entry in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 286: L909–917.

    Article  PubMed  CAS  Google Scholar 

  10. Ay B, Iyanoye A, Sieck GC, Prakash YS, Pabelick CM (2006) Cyclic nucleotide regulation of store-operated Ca2+ influx in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 290: L278–283.

    Article  PubMed  CAS  Google Scholar 

  11. Bai Y, Sanderson MJ (2006) Airway smooth muscle relaxation results from a reduction in the frequency of Ca2+ oscillations induced by a cAMP-mediated inhibition of the IP3 receptor. Respir Res 7: 34.

    Article  PubMed  Google Scholar 

  12. Bai Y, Edelmann M, Sanderson MJ (2009) The contribution of inositol 1,4,5-trisphosphate and ryanodine receptors to agonist-induced Ca2+ signaling of airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 297: L347–361.

    Article  PubMed  CAS  Google Scholar 

  13. Barchasz E, Naline E, Molimard M, Moreau J, Georges O, Emonds-Alt X, Advenier C (1999) Interleukin-1β-induced hyperresponsiveness to [Sar9,Met(O2)11]substance P in isolated human bronchi. Eur J Pharmacol 379: 87–95.

    Article  PubMed  CAS  Google Scholar 

  14. Bergner A, Kellner J, Silva AK, Gamarra F, Huber RM (2006) Ca2+-signaling in airway smooth muscle cells is altered in T-bet knock-out mice. Respir Res 7: 33.

    Article  PubMed  Google Scholar 

  15. Billington CK, Penn RB (2003) Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir Res 4: 2.

    PubMed  Google Scholar 

  16. Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID (2002) Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med 346: 1699–1705.

    Article  PubMed  Google Scholar 

  17. Chiba Y, Nakazawa S, Todoroki M, Shinozaki K, Sakai H, Misawa M (2009) Interleukin-13 augments bronchial smooth muscle contractility with an up-regulation of RhoA protein. Am J Respir Cell Mol Biol 40: 159–167.

    Article  PubMed  CAS  Google Scholar 

  18. Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, Harris JM, Scheerens H, Wu LC, Su Z, Mosesova S, Eisner MD, Bohen SP, Matthews JG (2011) Lebrikizumab treatment in adults with asthma. N Engl J Med 365: 1088–1098.

    Article  PubMed  CAS  Google Scholar 

  19. Deshpande DA, Walseth TF, Panettieri RA, Kannan MS (2003) CD38/cyclic ADP-ribose-mediated Ca2+ signaling contributes to airway smooth muscle hyper-responsiveness. FASEB J 17: 452–454.

    PubMed  CAS  Google Scholar 

  20. Deshpande DA, Dogan S, Walseth TF, Miller SM, Amrani Y, Panettieri RA, Kannan MS (2004) Modulation of calcium signaling by interleukin-13 in human airway smooth muscle: role of CD38/cyclic adenosine diphosphate ribose pathway. Am J Respir Cell Mol Biol 31: 36–42.

    Article  PubMed  CAS  Google Scholar 

  21. Deshpande DA, White TA, Dogan S, Walseth TF, Panettieri RA, Kannan MS (2005) CD38/cyclic ADP-ribose signaling: role in the regulation of calcium homeostasis in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 288: L773–788.

    Article  PubMed  CAS  Google Scholar 

  22. Espinosa K, Bosse Y, Stankova J, Rola-Pleszczynski M (2003) CysLT1 receptor upregulation by TGF-β and IL-13 is associated with bronchial smooth muscle cell proliferation in response to LTD4. J Allergy Clin Immunol 111: 1032–1040.

    Article  PubMed  CAS  Google Scholar 

  23. Ethier MF, Cappelluti E, Madison JM (2005) Mechanisms of interleukin-4 effects on calcium signaling in airway smooth muscle cells. J Pharmacol Exp Ther 313: 127–133.

    Article  PubMed  CAS  Google Scholar 

  24. Ethier MF, Madison JM (2006) IL-4 inhibits calcium transients in bovine trachealis cells by a ryanodine receptor-dependent mechanism. Faseb J 20: 154–156.

    PubMed  CAS  Google Scholar 

  25. Gally F, Hartney JM, Janssen WJ, Perraud AL (2009) CD38 plays a dual role in allergen-induced airway hyperresponsiveness. Am J Respir Cell Mol Biol 40: 433–442.

    Article  PubMed  CAS  Google Scholar 

  26. Gao YD, Zou JJ, Zheng JW, Shang M, Chen X, Geng S, Yang J (2010) Promoting effects of IL-13 on Ca2+ release and store-operated Ca2+ entry in airway smooth muscle cells. Pulm Pharmacol Ther 23: 182–189.

    Article  PubMed  CAS  Google Scholar 

  27. Gern JE, Busse WW (1999) Association of rhinovirus infections with asthma. Clin Microbiol Rev 12: 9–18.

    PubMed  CAS  Google Scholar 

  28. Goldsmith AM, Bentley JK, Zhou L, Jia Y, Bitar KN, Fingar DC, and Hershenson MB (2006) Transforming growth factor-β induces airway smooth muscle hypertrophy. Am J Respir Cell Mol Biol 34: 247–254.

    Article  PubMed  CAS  Google Scholar 

  29. Guedes AG, Paulin J, Rivero-Nava L, Kita H, Lund FE, Kannan MS (2006) CD38-deficient mice have reduced airway hyperresponsiveness following IL-13 challenge. Am J Physiol Lung Cell Mol Physiol 291: L1286–1293.

    Article  PubMed  CAS  Google Scholar 

  30. Hakonarson H, Herrick DJ, Serrano PG, Grunstein MM (1996) Mechanism of cytokine-induced modulation of β-adrenoceptor responsiveness in airway smooth muscle. J Clin Invest 97: 2593–2600.

    Article  PubMed  CAS  Google Scholar 

  31. Hakonarson H, Maskeri N, Carter C, Hodinka RL, Campbell D, Grunstein MM (1998) Mechanism of rhinovirus-induced changes in airway smooth muscle responsiveness. J Clin Invest 102: 1732–1741.

    Article  PubMed  CAS  Google Scholar 

  32. Hirota T, Takahashi A, Kubo M, Tsunoda T, Tomita K, Doi S, Fujita K, Miyatake A, Enomoto T, Miyagawa T, Adachi M, Tanaka H, Niimi A, Matsumoto H, Ito I, Masuko H, Sakamoto T, Hizawa N, Taniguchi M, Lima JJ, Irvin CG, Peters SP, Himes BE, Litonjua AA, Tantisira KG, Weiss ST, Kamatani N, Nakamura Y, Tamari M (2011) Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat Genet 43: 893–896.

    Article  PubMed  CAS  Google Scholar 

  33. Hotta K, Emala CW, Hirshman CA (1999) TNF-α upregulates Giα and Gqα protein expression and function in human airway smooth muscle cells. Am J Physiol 276: L405–411.

    PubMed  CAS  Google Scholar 

  34. Hunter I, Cobban HJ, Vandenabeele P, MacEwan DJ, Nixon GF (2003) Tumor necrosis factor-α-induced activation of RhoA in airway smooth muscle cells: role in the Ca2+ sensitization of myosin light chain20 phosphorylation. Mol Pharmacol 63: 714–721.

    Article  PubMed  CAS  Google Scholar 

  35. Hunter I, Nixon GF (2006) Spatial compartmentalization of tumor necrosis factor (TNF) receptor 1-dependent signaling pathways in human airway smooth muscle cells. Lipid rafts are essential for TNF-α-mediated activation of RhoA but dispensable for the activation of the NF-κB and MAPK pathways. J Biol Chem 281: 34705–34715.

    Article  PubMed  CAS  Google Scholar 

  36. Janssen LJ, Killian K (2006) Airway smooth muscle as a target of asthma therapy: history and new directions. Respir Res 7: 123.

    Article  PubMed  Google Scholar 

  37. Jude JA, Solway J, Panettieri RA, Jr., Walseth TF, Kannan MS Differential induction of CD38 expression by TNF-α in asthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 299: L879–890.

    Google Scholar 

  38. Jude JA, Wylam ME, Walseth TF, Kannan MS (2008) Calcium signaling in airway smooth muscle. Proc Am Thorac Soc 5: 15–22.

    Article  PubMed  CAS  Google Scholar 

  39. Kang BN, Deshpande DA, Tirumurugaan KG, Panettieri RA, Walseth TF, Kannan MS (2005) Adenoviral mediated anti-sense CD38 attenuates TNF-α-induced changes in calcium homeostasis of human airway smooth muscle cells. Can J Physiol Pharmacol 83: 799–804.

    Article  PubMed  CAS  Google Scholar 

  40. Kang BN, Tirumurugaan KG, Deshpande DA, Amrani Y, Panettieri RA, Walseth TF, Kannan MS (2006) Transcriptional regulation of CD38 expression by tumor necrosis factor-α in human airway smooth muscle cells: role of NF-κB and sensitivity to glucocorticoids. FASEB J 20: 1000–1002.

    Article  PubMed  CAS  Google Scholar 

  41. Kang BN, Jude JA, Panettieri RA, Jr., Walseth TF, Kannan MS (2008) Glucocorticoid regulation of CD38 expression in human airway smooth muscle cells: role of dual specificity phosphatase 1. Am J Physiol Lung Cell Mol Physiol 295: L186–193.

    Article  PubMed  CAS  Google Scholar 

  42. Kannan MS, Prakash YS, Brenner T, Mickelson JR, Sieck GC (1997) Role of ryanodine receptor channels in Ca2+ oscillations of porcine tracheal smooth muscle. Am J Physiol 272: L659–664.

    PubMed  CAS  Google Scholar 

  43. Kellner J, Gamarra F, Welsch U, Jorres RA, Huber RM, Bergner A (2007) IL-13Rα2 reverses the effects of IL-13 and IL-4 on bronchial reactivity and acetylcholine-induced Ca2+ signaling. Int Arch Allergy Immunol 142: 199–210.

    Article  PubMed  CAS  Google Scholar 

  44. Kim JH, Jain D, Tliba O, Yang B, Jester WF, Jr., Panettieri RA, Jr., Amrani Y, Pure E (2005) TGF-β potentiates airway smooth muscle responsiveness to bradykinin. Am J Physiol Lung Cell Mol Physiol 289: L511–520.

    Article  PubMed  CAS  Google Scholar 

  45. Kim MS, Zeng W, Yuan JP, Shin DM, Worley PF, Muallem S (2009) Native Store-operated Ca2+ Influx Requires the Channel Function of Orai1 and TRPC1. J Biol Chem 284: 9733–9741.

    Article  PubMed  CAS  Google Scholar 

  46. Kips JC, Tavernier J, Pauwels RA (1992) Tumor necrosis factor causes bronchial hyperresponsiveness in rats. Am Rev Respir Dis 145: 332–336.

    Article  PubMed  CAS  Google Scholar 

  47. Kobayashi M, Ashino S, Shiohama Y, Wakita D, Kitamura H, Nishimura T (2012) IFN-γ elevates airway hyper-responsiveness via up-regulation of neurokinin A/neurokinin-2 receptor signaling in a severe asthma model. Eur J Immunol 42: 393–402.

    Article  PubMed  CAS  Google Scholar 

  48. Kudo M, Melton AC, Chen C, Engler MB, Huang KE, Ren X, Wang Y, Bernstein X, Li JT, Atabai K, Huang X, Sheppard D (2012) IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nat Med 18: 547–554.

    Article  PubMed  CAS  Google Scholar 

  49. Kume H, Hall IP, Washabau RJ, Takagi K, Kotlikoff MI (1994) β-adrenergic agonists regulate KCa channels in airway smooth muscle by cAMP-dependent and -independent mechanisms. J Clin Invest 93: 371–379.

    Article  PubMed  CAS  Google Scholar 

  50. Laporte JC, Moore PE, Baraldo S, Jouvin MH, Church TL, Schwartzman IN, Panettieri RA, Jr., Kinet JP, Shore SA (2001) Direct effects of interleukin-13 on signaling pathways for physiological responses in cultured human airway smooth muscle cells. Am J Respir Crit Care Med 164: 141–148.

    Article  PubMed  CAS  Google Scholar 

  51. Lewis RS (2007) The molecular choreography of a store-operated calcium channel. Nature 446: 284–287.

    Article  PubMed  CAS  Google Scholar 

  52. Ma X, Cheng Z, Kong H, Wang Y, Unruh H, Stephens NL, Laviolette M (2002) Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects. Am J Physiol Lung Cell Mol Physiol 283: L1181–1189.

    PubMed  CAS  Google Scholar 

  53. Madison JM, Ethier MF (2001) Interleukin-4 rapidly inhibits calcium transients in response to carbachol in bovine airway smooth muscle cells. Am J Respir Cell Mol Biol 25: 239–244.

    Article  PubMed  CAS  Google Scholar 

  54. Mahn K, Hirst SJ, Ying S, Holt MR, Lavender P, Ojo OO, Siew L, Simcock DE, McVicker CG, Kanabar V, Snetkov VA, O’Connor BJ, Karner C, Cousins DJ, Macedo P, Chung KF, Corrigan CJ, Ward JP, Lee TH (2009) Diminished sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) expression contributes to airway remodelling in bronchial asthma. Proc Natl Acad Sci U S A 106: 10775–10780.

    Article  PubMed  CAS  Google Scholar 

  55. Mahn K, Ojo OO, Chadwick G, Aaronson PI, Ward JP, Lee TH (2010) Ca2+ homeostasis and structural and functional remodelling of airway smooth muscle in asthma. Thorax 65: 547–552.

    Article  PubMed  Google Scholar 

  56. Marthan R (2004) Store-operated calcium entry and intracellular calcium release channels in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 286: L907–908.

    Article  PubMed  CAS  Google Scholar 

  57. Martin G, O’Connell RJ, Pietrzykowski AZ, Treistman SN, Ethier MF, Madison JM (2008) Interleukin-4 activates large-conductance, calcium-activated potassium (BKCa) channels in human airway smooth muscle cells. Exp Physiol 93: 908–918.

    Article  PubMed  CAS  Google Scholar 

  58. Matsumoto H, Moir LM, Oliver BG, Burgess JK, Roth M, Black JL, McParland BE (2007) Comparison of gel contraction mediated by airway smooth muscle cells from patients with and without asthma. Thorax 62: 848–854.

    Article  PubMed  Google Scholar 

  59. Matsumoto H, Hirata Y, Otsuka K, Iwata T, Inazumi A, Niimi A, Ito I, Ogawa E, Muro S, Sakai H, Chin K, Oku Y, Mishima M (2012) Interleukin-13 enhanced Ca2+ oscillations in airway smooth muscle cells. Cytokine 57: 19–24.

    Article  PubMed  CAS  Google Scholar 

  60. McKinley L, Alcorn JF, Peterson A, Dupont RB, Kapadia S, Logar A, Henry A, Irvin CG, Piganelli JD, Ray A, Kolls JK (2008) TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J Immunol 181: 4089–4097.

    PubMed  CAS  Google Scholar 

  61. Moore PE, Lahiri T, Laporte JD, Church T, Panettieri RA, Jr., Shore SA (2001) Selected contribution: synergism between TNF-α and IL-1 β in airway smooth muscle cells: implications for β-adrenergic responsiveness. J Appl Physiol 91: 1467–1474.

    PubMed  CAS  Google Scholar 

  62. Morin C, Sirois M, Echave V, Rousseau E (2008) CPI-17 silencing-reduced responsiveness in control and TNF-α-treated human bronchi. Am J Respir Cell Mol Biol 39: 638–643.

    Article  PubMed  CAS  Google Scholar 

  63. Moynihan B, Tolloczko B, Michoud MC, Tamaoka M, Ferraro P, Martin JG (2008) MAP kinases mediate interleukin-13 effects on calcium signaling in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 295: L171–177.

    Article  PubMed  CAS  Google Scholar 

  64. Nakatani Y, Nishimura Y, Nishiuma T, Maeda H, Yokoyama M (2000) Tumor necrosis factor-α augments contraction and cytosolic Ca2+ sensitivity through phospholipase A2 in bovine tracheal smooth muscle. Eur J Pharmacol 392: 175–182.

    Article  PubMed  CAS  Google Scholar 

  65. Nogami M, Romberger DJ, Rennard SI, Toews ML (1994) TGF-β 1 modulates β-adrenergic receptor number and function in cultured human tracheal smooth muscle cells. Am J Physiol 266: L187–191.

    PubMed  CAS  Google Scholar 

  66. Parris JR, Cobban HJ, Littlejohn AF, MacEwan DJ, Nixon GF (1999) Tumour necrosis factor-α activates a calcium sensitization pathway in guinea-pig bronchial smooth muscle. J Physiol 518 (Pt 2): 561–569.

    Article  PubMed  CAS  Google Scholar 

  67. Peng Q, Matsuda T, Hirst SJ (2004) Signaling pathways regulating interleukin-13-stimulated chemokine release from airway smooth muscle. Am J Respir Crit Care Med 169: 596–603.

    Article  PubMed  Google Scholar 

  68. Prakash YS, Kannan MS, Walseth TF, Sieck GC (1998) Role of cyclic ADP-ribose in the regulation of [Ca2+]i in porcine tracheal smooth muscle. Am J Physiol 274: C1653–1660.

    PubMed  CAS  Google Scholar 

  69. Prakash YS, Thompson MA, Vaa B, Matabdin I, Peterson TE, He T, Pabelick CM (2007) Caveolins and intracellular calcium regulation in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 293: L1118–1126.

    Article  PubMed  CAS  Google Scholar 

  70. Prakash YS, Sathish V, Thompson MA, Pabelick CM, Sieck GC (2009) Asthma and sarcoplasmic reticulum Ca2+ reuptake in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 297: L794.

    Article  PubMed  CAS  Google Scholar 

  71. Pype JL, Xu H, Schuermans M, Dupont LJ, Wuyts W, Mak JC, Barnes PJ, Demedts MG, Verleden GM (2001) Mechanisms of interleukin 1β-induced human airway smooth muscle hyporesponsiveness to histamine. Involvement of p38 MAPK NF-κB. Am J Respir Crit Care Med 163: 1010–1017.

    Article  PubMed  CAS  Google Scholar 

  72. Risse PA, Jo T, Suarez F, Hirota N, Tolloczko B, Ferraro P, Grutter P, Martin JG (2011) Interleukin-13 inhibits proliferation and enhances contractility of human airway smooth muscle cells without change in contractile phenotype. Am J Physiol Lung Cell Mol Physiol 300: L958–966.

    Article  PubMed  CAS  Google Scholar 

  73. Saha SK, Berry MA, Parker D, Siddiqui S, Morgan A, May R, Monk P, Bradding P, Wardlaw AJ, Pavord ID, Brightling CE (2008) Increased sputum and bronchial biopsy IL-13 expression in severe asthma. J Allergy Clin Immunol 121: 685–691.

    Article  PubMed  CAS  Google Scholar 

  74. Sanderson MJ, Delmotte P, Bai Y, Perez-Zogbhi JF (2008) Regulation of airway smooth muscle cell contractility by Ca2+ signaling and sensitivity. Proc Am Thorac Soc 5: 23–31.

    Article  PubMed  CAS  Google Scholar 

  75. Sathish V, Thompson MA, Bailey JP, Pabelick CM, Prakash YS, Sieck GC (2009) Effect of proinflammatory cytokines on regulation of sarcoplasmic reticulum Ca2+ reuptake in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 297: L26–34.

    Article  PubMed  CAS  Google Scholar 

  76. Sathish V, Abcejo AJ, VanOosten SK, Thompson MA, Prakash YS, Pabelick CM (2011) Caveolin-1 in cytokine-induced enhancement of intracellular Ca2+ in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 301: L607–614.

    Article  PubMed  CAS  Google Scholar 

  77. Sathish V, Yang B, Meuchel LW, VanOosten SK, Ryu AJ, Thompson MA, Prakash YS, Pabelick CM (2011) Caveolin-1 and force regulation in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 300: L920–929.

    Article  PubMed  CAS  Google Scholar 

  78. Sathish V, Abcejo AJ, Thompson MA, Sieck GC, Prakash YS, Pabelick CM (2012) Caveolin-1 regulation of store-operated Ca2+ influx in human airway smooth muscle. Eur Respir J 40: 470–478.

    Article  PubMed  CAS  Google Scholar 

  79. Seasholtz TM, Majumdar M, Brown JH (1999) Rho as a mediator of G protein-coupled receptor signaling. Mol Pharmacol 55: 949–956.

    PubMed  CAS  Google Scholar 

  80. Shore SA, Laporte J, Hall IP, Hardy E, Panettieri RA, Jr. (1997) Effect of IL-1 β on responses of cultured human airway smooth muscle cells to bronchodilator agonists. Am J Respir Cell Mol Biol 16: 702–712.

    Article  PubMed  CAS  Google Scholar 

  81. Shore SA, Moore PE (2002) Effects of cytokines on contractile and dilator responses of airway smooth muscle. Clin Exp Pharmacol Physiol 29: 859–866.

    Article  PubMed  CAS  Google Scholar 

  82. Sieck GC, White TA, Thompson MA, Pabelick CM, Wylam ME, Prakash YS (2008) Regulation of store-operated Ca2+ entry by CD38 in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 294: L378–385.

    Article  PubMed  CAS  Google Scholar 

  83. Smelter DF, Sathish V, Thompson MA, Pabelick CM, Vassallo R, Prakash YS (2010) Thymic stromal lymphopoietin in cigarette smoke-exposed human airway smooth muscle. J Immunol 185: 3035–3040.

    Article  PubMed  CAS  Google Scholar 

  84. Sterk PJ, Bel EH (1989) Bronchial hyperresponsiveness: the need for a distinction between hypersensitivity and excessive airway narrowing. Eur Respir J 2: 267–274.

    PubMed  CAS  Google Scholar 

  85. Sukkar MB, Hughes JM, Armour CL, Johnson PR (2001) Tumour necrosis factor-α potentiates contraction of human bronchus in vitro. Respirology 6: 199–203.

    Article  PubMed  CAS  Google Scholar 

  86. Thomas PS, Yates DH, Barnes PJ (1995) Tumor necrosis factor-α increases airway responsiveness and sputum neutrophilia in normal human subjects. Am J Respir Crit Care Med 152: 76–80.

    Article  PubMed  CAS  Google Scholar 

  87. Thomas PS, Heywood G (2002) Effects of inhaled tumour necrosis factor α in subjects with mild asthma. Thorax 57: 774–778.

    Article  PubMed  CAS  Google Scholar 

  88. Tirumurugaan KG, Jude JA, Kang BN, Panettieri RA, Walseth TF, Kannan MS (2007) TNF-α induced CD38 expression in human airway smooth muscle cells: role of MAP kinases and transcription factors NF-κB and AP-1. Am J Physiol Lung Cell Mol Physiol 292: L1385–1395.

    Article  PubMed  CAS  Google Scholar 

  89. Tirumurugaan KG, Kang BN, Panettieri RA, Foster DN, Walseth TF, Kannan MS (2008) Regulation of the CD38 promoter in human airway smooth muscle cells by TNF-α and dexamethasone. Respir Res 9: 26.

    Article  PubMed  Google Scholar 

  90. Tliba O, Deshpande D, Chen H, Van Besien C, Kannan M, Panettieri RA, Jr., Amrani Y (2003) IL-13 enhances agonist-evoked calcium signals and contractile responses in airway smooth muscle. Br J Pharmacol 140: 1159–1162.

    Article  PubMed  CAS  Google Scholar 

  91. Tliba O, Cidlowski JA, Amrani Y (2006) CD38 expression is insensitive to steroid action in cells treated with tumor necrosis factor-α and interferon-γ by a mechanism involving the up-regulation of the glucocorticoid receptor β isoform. Mol Pharmacol 69: 588–596.

    Article  PubMed  CAS  Google Scholar 

  92. Trian T, Benard G, Begueret H, Rossignol R, Girodet PO, Ghosh D, Ousova O, Vernejoux JM, Marthan R, Tunon-de-Lara JM, Berger P (2007) Bronchial smooth muscle remodeling involves calcium-dependent enhanced mitochondrial biogenesis in asthma. J Exp Med 204: 3173–3181.

    Article  PubMed  CAS  Google Scholar 

  93. Trian T, Moir LM, Ge Q, Burgess JK, Kuo C, King NJ, Reddel HK, Black JL, Oliver BG, McParland BE (2010) Rhinovirus-induced exacerbations of asthma: How is the β2-adrenoceptor implicated? Am J Respir Cell Mol Biol 43: 227–233.

    Article  PubMed  CAS  Google Scholar 

  94. Ward JP (2006) On Ca2+ sensitivity and the airways: Not just any smooth muscle. Eur Respir J 28: 680–682.

    Article  PubMed  CAS  Google Scholar 

  95. White TA, Xue A, Chini EN, Thompson M, Sieck GC, Wylam ME (2006) Role of transient receptor potential C3 in TNF-α-enhanced calcium influx in human airway myocytes. Am J Respir Cell Mol Biol 35: 243–251.

    Article  PubMed  CAS  Google Scholar 

  96. Ying S, O’Connor B, Ratoff J, Meng Q, Fang C, Cousins D, Zhang G, Gu S, Gao Z, Shamji B, Edwards MJ, Lee TH, Corrigan CJ (2008) Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J Immunol 181: 2790–2798.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisako Matsumoto M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Matsumoto, H. (2014). Effects of Inflammatory Cytokines on Ca2+ Homeostasis in Airway Smooth Muscle Cells. In: Wang, YX. (eds) Calcium Signaling In Airway Smooth Muscle Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-01312-1_20

Download citation

Publish with us

Policies and ethics