Skip to main content

Advertisement

Log in

Behavior of Circulating CD4+CD25+Foxp3+ Regulatory T Cells in Colon Cancer Patients Undergoing Surgery

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

CD4+CD25+Foxp3+ regulatory T cells (Treg) specialize in suppressing immune responses. In this study, 47 consecutive colon cancer patients were subjected to circulating Treg frequency assessment by flow cytometry before and after cancer resection. Thirty-two healthy subjects served as controls. Circulating Treg frequencies were significantly higher in colon cancer patients with respect to healthy controls. When patients were subgrouped according to Dukes stages, a linear relationship was observed between Dukes stages and Treg frequencies. In radically resected patients, Treg frequencies were shown to have significantly dropped down. Patients with advanced colon cancer were more likely to have significantly higher proportions of circulating Treg frequencies than Dukes A and B patients when compared to healthy subjects. Of note, nonradically resected patients were found to display reductions in—but not normalization of—Treg frequencies. These results suggest that cancer itself may be able to drive Treg recruitment as a strategy of immunoevasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest. 2007;117:1137–46.

    Article  PubMed  CAS  Google Scholar 

  2. Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007;25:267–96.

    Article  PubMed  CAS  Google Scholar 

  3. Finn OJ. Cancer immunology. N Engl J Med. 2008;358:2704–15.

    Article  PubMed  CAS  Google Scholar 

  4. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.

    Article  PubMed  CAS  Google Scholar 

  5. Rezaei N, Hedayat M, Aghamohammadi A, Nichols KE. Primary immunodeficiency diseases associated with increased susceptibility to viral infections and malignancies. J Allergy Clin Immunol. 2011;127:1329–41.

    Article  PubMed  Google Scholar 

  6. Grulich AE. Cancer: the effects of HIV and antiretroviral therapy, and implications for early antiretroviral therapy initiation. Curr Opin HIV AIDS. 2009;4:183–7.

    Article  PubMed  Google Scholar 

  7. Clifford GM, Franceschi S. Cancer risk in HIV-infected persons: influence of CD4(+) count. Future Oncol. 2009;5:669–78.

    Article  PubMed  CAS  Google Scholar 

  8. Blaes AH, Morrison VA. Post-transplant lymphoproliferative disorders following solid-organ transplantation. Expert Rev Hematol. 2010;3:35–44.

    Article  PubMed  Google Scholar 

  9. Roithmaier S, Haydon AM, Loi S, Esmore D, Griffiths A, Bergin P, et al. Incidence of malignancies in heart and/or lung transplant recipients: a single-institution experience. J Heart Lung Transplant. 2007;26:845–9.

    Article  PubMed  Google Scholar 

  10. Rama I, Grinyò JM. Malignancy after renal transplantation: the role of immunosuppression. Nat Rev Nephrol. 2010;6:511–9.

    Article  PubMed  CAS  Google Scholar 

  11. Yaguchi T, Sumimoto H, Kudo-Saito C, Tsukamoto N, Ueda R, Iwata-Kajihara T, et al. The mechanisms of cancer immunoescape and development of overcoming strategies. Int J Hematol. 2011;93:294–300.

    Article  PubMed  Google Scholar 

  12. Teicher BA. Transforming growth factor-beta and the immune response to malignant disease. Clin Cancer Res. 2007;13:6247–51.

    Article  PubMed  CAS  Google Scholar 

  13. Houston A, Bennett MW, O’Sullivan GC, Shanahan F, O’Connell J. Fas ligand mediates immune privilege and not inflammation in human colon cancer, irrespective of TGF-beta expression. Br J Cancer. 2003;89:1345–51.

    Article  PubMed  CAS  Google Scholar 

  14. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9:1269–74.

    Article  PubMed  CAS  Google Scholar 

  15. Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in immune suppression and cancer. Curr Cancer Drug Targets. 2007;7:31–40.

    Article  PubMed  CAS  Google Scholar 

  16. Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T. Regulatory T cells: how do they suppress immune responses? Int Immunol. 2009;21:1105–11.

    Article  PubMed  CAS  Google Scholar 

  17. Cvetanovich GL, Hafler DA. Human regulatory T cells in autoimmune diseases. Curr Opin Immunol. 2010;22:753–60.

    Article  PubMed  CAS  Google Scholar 

  18. Buckner JH. Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases. Nat Rev Immunol. 2010;10:849–59.

    Article  PubMed  CAS  Google Scholar 

  19. Valencia X, Lipsky PE. CD4+CD25+FoxP3+ regulatory T cells in autoimmune diseases. Nat Clin Pract Rheumatol. 2007;3:619–26.

    Article  PubMed  CAS  Google Scholar 

  20. Beyer M, Schultze JL. Regulatory T cells in cancer. Blood. 2006;108:804–11.

    Article  PubMed  CAS  Google Scholar 

  21. Campbell DJ, Koch MA. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol. 2011;11:119–30.

    Article  PubMed  CAS  Google Scholar 

  22. Fujio K, Okamura T, Yamamoto K. The family of IL-10-secreting CD4+ T cells. Adv Immunol. 2010;105:99–130.

    Article  PubMed  CAS  Google Scholar 

  23. Battaglia M, Gregori S, Bacchetta R, Roncarolo MG. Tr1 cells: from discovery to their clinical application. Semin Immunol. 2006;18:120–7.

    Article  PubMed  CAS  Google Scholar 

  24. Faria AM, Weiner HL. Oral tolerance and TGF-beta-producing cells. Inflamm Allergy Drug Targets. 2006;5:179–90.

    Article  PubMed  CAS  Google Scholar 

  25. Filaci G, Fenoglio D, Indiveri F. CD8+ T regulatory/suppressor cells and their relationships with autoreactivity and autoimmunity. Autoimmunity. 2011;44:51–7.

    Article  PubMed  CAS  Google Scholar 

  26. Miyara M, Sakaguchi S. Human Foxp3+CD4+ regulatory T cells: their knowns and unknowns. Immunol Cell Biol. 2011;89:346–51.

    Article  PubMed  CAS  Google Scholar 

  27. Horwitz DA, Zheng SG, Gray JD. Natural and TGF-beta-induced Foxp3+CD4+CD25+ regulatory T cells are not mirror images of each other. Trends Immunol. 2008;29:429–35.

    Article  PubMed  CAS  Google Scholar 

  28. Lin Ling K, Pratap SE, Bates GJ, Singh B, Mortensen NJ, George BD, et al. Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colon cancer patients. Cancer Immunity. 2007;7:7.

    Google Scholar 

  29. Miller AM, Lundberg K, Özenci V, Banham AH, Hellström M, Egevad L, et al. CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol. 2006;177:7398–405.

    PubMed  CAS  Google Scholar 

  30. Schaefer C, Kim GG, Albers A, Hoermann K, Myers EN, Whiteside TL. Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br J Cancer. 2005;92:913–20.

    Article  PubMed  CAS  Google Scholar 

  31. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res. 2003;9:606–12.

    PubMed  Google Scholar 

  32. Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res. 2003;9:4404–8.

    PubMed  Google Scholar 

  33. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002;169:2756–61.

    PubMed  CAS  Google Scholar 

  34. Okita R, Saeki T, Takashima S, Yamaguchi Y, Toge T. CD4+CD25+ regulatory T cells in the peripheral blood of patients with breast cancer and non-small cell lung cancer. Oncol Rep. 2005;14:1269–73.

    PubMed  CAS  Google Scholar 

  35. Perez SA, Karamouzis MV, Skarlos DV, Ardavanis A, Sotiriadou NN, Iliopoulou EG, et al. CD4+CD25+ regulatory T-cell frequency in HER-2/neu (HER)-positive and HER-negative advanced-stage breast cancer patients. Clin Cancer Res. 2007;13:2714–21.

    Article  PubMed  CAS  Google Scholar 

  36. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005;65:2457–64.

    Article  PubMed  CAS  Google Scholar 

  37. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 2001;61:4766–72.

    PubMed  CAS  Google Scholar 

  38. Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA, et al. In vivo peripheral expansion of naïve CD4+CD25highFoxp3+ regulatory T cells in patients with multiple myeloma. Blood. 2006;107:3940–9.

    Article  PubMed  CAS  Google Scholar 

  39. Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A, et al. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res. 2009;15:3325–32.

    Article  PubMed  CAS  Google Scholar 

  40. Schabowsky RH, Madireddi S, Sharma R, Yolcu ES, Shirwan H. Targeting CD4+CD25+FoxP3+ regulatory T-cells for the augmentation of cancer immunotherapy. Curr Opin Investig Drugs. 2007;8:1002–8.

    PubMed  CAS  Google Scholar 

  41. Chan YH. Biostatistics 203. Survival analysis. Singapore Med J. 2004;45:249–56.

    PubMed  CAS  Google Scholar 

  42. Loddenkemper C, Schernus M, Noutsias M, Stein H, Thiel E, Nagorsen D. In situ analysis of Foxp3+ regulatory T cells in human colorectal cancer. J Transl Med. 2006;4:52.

    Article  PubMed  Google Scholar 

  43. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, et al. Tumor-infiltrating Foxp3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009;27:186–92.

    Article  PubMed  Google Scholar 

  44. Sinicrope FA, Rego RL, Ansell SM, Knutson KL, Foster NR, Sargent DJ. Intraepithelial effector CD3+/regulatory (Foxp3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology. 2009;137:1270–9.

    Article  PubMed  CAS  Google Scholar 

  45. Correale P, Rotundo MS, Del Vecchio MT, Remondo C, Migali C, Ginanneschi C, et al. Regulatory (Foxp3+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo or chemoimmunotherapy. J Immunother. 2010;33:435–41.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to all patients who donated blood for this study and to Rosalinda Esposito, RN, for excellent assistance in assuring timely blood sample collection and delivery to the immunology laboratory. Excellent assistance by Drs. Adri and Giovi permitted timely enrollment of healthy subjects for comparison measures with patients.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gennaro Galizia or Ciro Romano.

Additional information

Ausilia Sellitto and Gennaro Galizia have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sellitto, A., Galizia, G., De Fanis, U. et al. Behavior of Circulating CD4+CD25+Foxp3+ Regulatory T Cells in Colon Cancer Patients Undergoing Surgery. J Clin Immunol 31, 1095–1104 (2011). https://doi.org/10.1007/s10875-011-9585-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-011-9585-8

Keywords

Navigation