Skip to main content

Advertisement

Log in

Dectin-1 is Inducible and Plays an Essential Role for Mycobacteria-Induced Innate Immune Responses in Airway Epithelial Cells

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Introduction

Airway epithelial cells are the first cells to be challenged upon contact with mycobacteria. In response, they express pattern-recognition receptors that play fundamental roles as sentinels and mediators of pulmonary innate immunity. The c-type lectin Dectin-1 is expressed predominantly on the surface of myeloid lineage cells. In this study, we examined the induction, regulation, and functions of Dectin-1 in pulmonary epithelial cells.

Results

Mycobacterium tuberculosis (Mtb) actively induced the expression of Dectin-1 mRNA and protein in A549 cells in a toll-like receptor (TLR) 2-dependent manner. In addition, Mtb-mediated generation of reactive oxygen species and Dectin-1 induction were mutually dependent. Moreover, Mtb actively induced the phosphorylation of Src family kinases at Tyr416 via TLR2. Selective inhibition of Src markedly attenuated the induction of Mtb-dependent Dectin-1 expression, indicating that Src kinases are crucial regulators of Dectin-1-dependent signaling. Mtb internalization was partially blocked by silencing Dectin-1 expression, inhibiting Src kinases, or pretreating with antioxidants. Finally, Dectin-1 was required for pro-inflammatory cytokine release and antimicrobial effects on intracellular mycobacterial growth in A549 cells.

Conclusion

Collectively, our findings demonstrate the novel induction of Dectin-1 in type II airway epithelial cells and its critical role in the innate immune response against Mtb in non-phagocytic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Russell DG. Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol. 2001;2:569–77.

    Article  CAS  PubMed  Google Scholar 

  2. Vergne I, Chua J, Singh SB, Deretic V. Cell biology of Mycobacterium tuberculosis phagosome. Annu Rev Cell Dev Biol. 2004;20:367–94.

    Article  CAS  PubMed  Google Scholar 

  3. Bermudez LE, Goodman J. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect Immun. 1996;64:1400–6.

    CAS  PubMed  Google Scholar 

  4. Roy S, Sharma S, Sharma M, Aggarwal R, Bose M. Induction of nitric oxide release from the human alveolar epithelial cell line A549: an in vitro correlate of innate immune response to Mycobacterium tuberculosis. Immunology. 2004;112:471–80.

    Article  CAS  PubMed  Google Scholar 

  5. Gribar SC, Richardson WM, Sodhi CP, Hackam DJ. No longer an innocent bystander: epithelial toll-like receptor signaling in the development of mucosal inflammation. Mol Med. 2008;14:645–59.

    Article  CAS  PubMed  Google Scholar 

  6. Diamond G, Legarda D, Ryan LK. The innate immune response of the respiratory epithelium. Immunol Rev. 2000;173:27–38.

    Article  CAS  PubMed  Google Scholar 

  7. Bals R, Hiemstra PS. Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J. 2004;23:327–33.

    Article  CAS  PubMed  Google Scholar 

  8. Herre J, Willment JA, Gordon S, Brown GD. The role of Dectin-1 in antifungal immunity. Crit Rev Immunol. 2004;24:193–203.

    Article  CAS  PubMed  Google Scholar 

  9. Schorey JS, Lawrence C. The pattern recognition receptor Dectin-1: from fungi to mycobacteria. Curr Drug Targets. 2008;9:123–9.

    Article  CAS  PubMed  Google Scholar 

  10. Jo EK. Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and NLRs. Curr Opin Infect Dis. 2008;21:279–86.

    Article  CAS  PubMed  Google Scholar 

  11. Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L, Gordon S, et al. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol. 2002;169:3776–82.

    Google Scholar 

  12. Sun L, Zhao Y. The biological role of dectin-1 in immune response. Int Rev Immunol. 2007;26:349–64.

    Article  CAS  PubMed  Google Scholar 

  13. Underhill DM. Collaboration between the innate immune receptors dectin-1, TLRs, and Nods. Immunol Rev. 2007;219:75–87.

    Article  CAS  PubMed  Google Scholar 

  14. Brown GD, Gordon S. Immune recognition. A new receptor for beta-glucans. Nature. 2001;413:36–7.

    Article  CAS  PubMed  Google Scholar 

  15. Underhill DM, Rossnagle E, Lowell CA, Simmons RM. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood. 2005;106:2543–50.

    Article  CAS  PubMed  Google Scholar 

  16. Aslan M, Ozben T. Oxidants in receptor tyrosine kinase signal transduction pathways. Antioxid Redox Signal. 2003;5:781–8.

    Article  CAS  PubMed  Google Scholar 

  17. Poli G, Leonarduzzi G, Biasi F, Chiarpotto E. Oxidative stress and cell signalling. Curr Med Chem. 2004;11:1163–82.

    CAS  PubMed  Google Scholar 

  18. Chandel NS, Budinger GR. The cellular basis for diverse responses to oxygen. Free Radic Biol Med. 2007;42:165–74.

    Article  CAS  PubMed  Google Scholar 

  19. Lee HM, Shin DM, Choi DK, Lee ZW, Kim KH, Yuk JM, et al. Innate immune responses to Mycobacterium ulcerans via toll-like receptors and dectin-1 in human keratinocytes. Cell Microbiol. 2009;11:678–92.

    Article  CAS  PubMed  Google Scholar 

  20. Song CH, Lee JS, Kim HJ, Park JK, Paik TH, Jo EK. Role of mitogen-activated protein kinase pathways in the production of tumor necrosis factor-alpha, interleukin-10, and monocyte chemotactic protein-1 by Mycobacterium tuberculosis H37Rv-infected human monocytes. J Clin Immunol. 2003;23:194–201.

    Article  CAS  PubMed  Google Scholar 

  21. Jo EK, Yang CS, Choi CH, Harding CV. Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol. 2007;9:1087–98.

    Article  CAS  PubMed  Google Scholar 

  22. Yang Z, Marshall JS. Zymosan treatment of mouse mast cells enhances dectin-1 expression and induces dectin-1-dependent reactive oxygen species (ROS) generation. Immunobiology. 2009;214:321–30.

    Article  CAS  PubMed  Google Scholar 

  23. Gantner BN, Simmons RM, Underhill DM. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 2005;24:1277–86.

    Article  CAS  PubMed  Google Scholar 

  24. Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med. 2003;197:1107–17.

    Article  CAS  PubMed  Google Scholar 

  25. Goodridge HS, Simmons RM, Underhill DM. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol. 2007;178:3107–15.

    CAS  PubMed  Google Scholar 

  26. Sun G, Sharma AK, Budde RJ. Autophosphorylation of Src and Yes blocks their inactivation by Csk phosphorylation. Oncogene. 1998;17:1587–95.

    Article  CAS  PubMed  Google Scholar 

  27. Shin DM, Yang CS, Yuk JM, Lee JY, Kim KH, Shin SJ, et al. Mycobacterium abscessus activates the macrophage innate immune response via a physical and functional interaction between TLR2 and dectin-1. Cell Microbiol. 2008;10:1608–21.

    Article  CAS  PubMed  Google Scholar 

  28. Bhatt K, Salgame P. Host innate immune response to Mycobacterium tuberculosis. J Clin Immunol. 2007;27:347–62.

    Article  CAS  PubMed  Google Scholar 

  29. Yadav M, Schorey JS. The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood. 2006;108:3168–75.

    Article  CAS  PubMed  Google Scholar 

  30. Yodoi J, Masutani H, Nakamura H. Redox regulation by the human thioredoxin system. Biofactors. 2001;15:107–11.

    Article  CAS  PubMed  Google Scholar 

  31. Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002;192:1–15.

    Article  CAS  PubMed  Google Scholar 

  32. Yang CS, Shin DM, Lee HM, Son JW, Lee SJ, Akira S, et al. ASK1–p38 MAPK-p47phox activation is essential for inflammatory responses during tuberculosis via TLR2-ROS signalling. Cell Microbiol. 2008;10:741–54.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang J, Xing D, Gao X. Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway. J Cell Physiol. 2008;217:518–28.

    Article  CAS  PubMed  Google Scholar 

  34. Lee IT, Wang SW, Lee CW, Chang CC, Lin CC, Luo SF, et al. Lipoteichoic acid induces HO-1 expression via the TLR2/MyD88/c-Src/NADPH oxidase pathway and Nrf2 in human tracheal smooth muscle cells. J Immunol. 2008;181:5098–110.

    CAS  PubMed  Google Scholar 

  35. Olsson S, Sundler R. The macrophage beta-glucan receptor mediates arachidonate release induced by zymosan: essential role for Src family kinases. Mol Immunol. 2007;44:1509–15.

    Article  CAS  PubMed  Google Scholar 

  36. Stocker R, JFJr K. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84:1381–478.

    Article  CAS  PubMed  Google Scholar 

  37. Parsons SJ, Parsons JT. Src family kinases, key regulators of signal transduction. Oncogene. 2004;23:7906–9.

    Article  CAS  PubMed  Google Scholar 

  38. García-Pérez BE, Mondragón-Flores R, Luna-Herrera J. Internalization of Mycobacterium tuberculosis by macropinocytosis in non-phagocytic cells. Microb Pathog. 2003;35:49–55.

    Article  CAS  PubMed  Google Scholar 

  39. McCann F, Carmona E, Puri V, Pagano RE, Limper AH. Macrophage internalization of fungal beta-glucans is not necessary for initiation of related inflammatory responses. Infect Immun. 2005;73:6340–9.

    Article  CAS  PubMed  Google Scholar 

  40. Xu S, Huo J, Lee KG, Kurosaki T, Lam KP. Phospholipase Cgamma2 is critical for Dectin-1-mediated Ca2+ flux and cytokine production in dendritic cells. J Biol Chem. 2009;284:7038–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Korea Science and Engineering Foundation through the Infection Signaling Network Research Center (R13-2007-020-01000-0) at Chungnam National University. We thank Dr. R. L. Friedman for Mtb H37Rv; Dr. S. G. Franzbalu for Mtb-GFP; Dr. K. Kwon for bacterial strains; and Dr. C. V. Harding for 19-kDa antigen. The authors have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Kyeong Jo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HM., Yuk, JM., Shin, DM. et al. Dectin-1 is Inducible and Plays an Essential Role for Mycobacteria-Induced Innate Immune Responses in Airway Epithelial Cells. J Clin Immunol 29, 795–805 (2009). https://doi.org/10.1007/s10875-009-9319-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-009-9319-3

Keywords

Navigation